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Exploitation of instruction level parallelism

Compilation techniques and ILP

Taking advantage of ILP

ILP directly applicable to basic blocks.
Basic block: sequence of instructions without branching.
Typical program in MIPS:

Basic block average size from 3 to 6 instructions.
Low ILP exploitation within block.

Need to exploit ILP across basic blocks.

Example

for ( i=0;i<1000;i++) {
x[ i ] = x[ i ] + y[ i ];

}

Loop level parallelism.
Can be transformed to ILP.
By compiler or hardware.

Alternative:
Vector instructions.
SIMD instructions in processor.
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Scheduling and loop unrolling

Parallelism exploitation:
Interleave execution of unrelated instructions.
Fill stalls with instructions.
Do not alter original program effects.

Compiler can do this with detailed knowledge of the
architecture.
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Exploitation of instruction level parallelism

Compilation techniques and ILP

ILP exploitation

Example

for ( i=999;i>=0;i−−) {
x[ i ] = x[ i ] + s;

}

Each iteration body is
independent.

Latencies between instructions
Instruction Instruction Latency (cycles)
producing result using result
FP ALU operation FP ALU operation 3
FP ALU operation Store double 2
Load double FP ALU operation 1
Load double Store double 0
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Compiled code

R1→ Last array element.
F2→ Scalar s.
R2→ Precomputed so that 8(R2) is the first element in
array.

Assembler code

Loop : L.D F0 , 0(R1) ; F0 <− x [ i ]
ADD.D F4 , F0 , F2 ; F4 <− F0 + s
S.D F4 , 0(R1) ; x [ i ] <− F4
DADDUI R1, R1, #−8 ; i− −
BNE R1, R2, Loop ; Branch i f R1!=R2
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Stalls in execution

Original

Loop : L.D F0 , 0(R1)
ADD.D F4 , F0 , F2
S.D F4 , 0(R1)
DADDUI R1, R1, #−8
BNE R1, R2, Loop

Stalls

Loop : L.D F0 , 0(R1)
< s t a l l >
ADD.D F4 , F0 , F2
< s t a l l >
< s t a l l >
S.D F4 , 0(R1)
DADDUI R1, R1, #−8
< s t a l l >
BNE R1, R2, Loop
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Loop scheduling

Original

Loop : L.D F0 , 0(R1)
< s t a l l >
ADD.D F4 , F0 , F2
< s t a l l >
< s t a l l >
S.D F4 , 0(R1)
DADDUI R1, R1, #−8
< s t a l l >
BNE R1, R2, Loop

9 cycles per iteration.

Scheduled

Loop : L.D F0 , 0(R1)
DADDUI R1, R1, #−8
ADD.D F4 , F0 , F2
< s t a l l >
< s t a l l >
S.D F4 , 8(R1)
BNE R1, R2, Loop

7 cycles per iteration.
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Loop unrolling

Idea:
Replicate loop body several times.
Adjust termination code.
Use different registers for each iteration replica to reduce
dependencies.

Effect:
Increase basic block length.
Increase use of available ILP.
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Unrolling

Unrolling (x4)

Loop : L.D F0 , 0(R1)
ADD.D F4 , F0 , F2
S.D F4 , 0(R1)
L.D F6 , −8(R1)
ADD.D F8 , F6 , F2
S.D F8 , −8(R1)
L.D F10 , −16(R1)

Unrolling (x4)

ADD.D F12 , F10 , F2
S.D F12 , −16(R1)
L.D F14 , −24(R1)
ADD.D F16 , F14 , F2
S.D F16 , −24(R1)
DADDUI R1, R1, #−32
BNE R1, R2, Loop

4 iterations require more registers.
This example assumes that array size is multiple of 4.
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Stalls and unrolling

Unrolling (x4)

Loop : L.D F0 , 0(R1)
< s t a l l >
ADD.D F4 , F0 , F2
< s t a l l >
< s t a l l >
S.D F4 , 0(R1)
L.D F6 , −8(R1)
< s t a l l >
ADD.D F8 , F6 , F2
< s t a l l >
< s t a l l >
S.D F8 , −8(R1)
L.D F10 , −16(R1)
< s t a l l >

Unrolling (x4)

ADD.D F12 , F10 , F2
< s t a l l >
< s t a l l >
S.D F12 , −16(R1)
L.D F14 , −24(R1)
< s t a l l >
ADD.D F16 , F14 , F2
< s t a l l >
< s t a l l >
S.D F16 , −24(R1)
DADDUI R1, R1, #−32
< s t a l l >
BNE R1, R2, Loop

27 cycles for every 4 iterations→ 6.75 cycles per iteration.
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Scheduling and unrolling

Unrolling (x4)

Loop : L.D F0 , 0(R1)
L.D F6 , −8(R1)
L.D F10 , −16(R1)
L.D F14 , −24(R1)
ADD.D F4 , F0 , F2
ADD.D F8 , F6 , F2
ADD.D F12 , F10 , F2
ADD.D F16 , F14 , F2
S.D F4 , 0(R1)
S.D F8 , −8(R1)
S.D F12 , −16(R1)
DADDUI R1, R1, #−32
S.D F16 , 8(R1)
BNE R1, R2, Loop

Code reorganization.
Preserve
dependencies.
Semantically
equivalent.
Goal: Make use of
stalls.

Update of R1 at enough
distance from BNE.
14 cycles for every 4
iterations→ 3.5 cycles
per iteration.
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Exploitation of instruction level parallelism

Compilation techniques and ILP

Limits of loop unrolling

Improvement is decreased with each additional unrolling.
Improvement limited to stalls removal.
Overhead amortized among iterations.

Increase in code size.
May affect to instruction cache miss rate.

Pressure on register file.
May generate shortage of registers.
Advantages are lost if there are not enough available
registers.
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Exploitation of instruction level parallelism

Advanced branch prediction techniques

Branch prediction

High impact of branches on programs performance.

To reduce impact:
Loop unrolling.
Branch prediction:

Compile time.
Each branch handled isolated.

Advanced branch prediction:
Correlated predictors.
Tournament predictors.
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Exploitation of instruction level parallelism

Advanced branch prediction techniques

Dynamic scheduling

Hardware reorders instructions execution to reduce stalls
while keeping data flow and exceptions.

Able to handle unknown cases at compile time:
Cache misses/hits.

Code less dependent on a concrete pipeline.
Simplifies compiler.

Permits the hardware speculation.
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Exploitation of instruction level parallelism

Advanced branch prediction techniques

Correlated prediction

If first and second branch are taken,
third is NOT-taken.

example

if (a==2) { a=0; }
if (b==2) { b=0; }
if (a!=b) { f () ; }

Maintains last branches history to select among several
predictors.
A (m,n) predictor:

Uses the result of m last branches to select among 2m

predictors.
Each predictor has n bits.

Predictor (1,2):
Result of last branch to select among 2 predictors.
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Exploitation of instruction level parallelism

Advanced branch prediction techniques

Size of predictor

A predictor (m,n) has several entries for each branch
address.
Total size:

S = 2m × n × entriesaddress

Examples:
(0,2) with 4K entries→ 8 Kb
(2,2) with 4K entries→ 32 Kb
(2,2) with 1K entries→ 8 Kb
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Exploitation of instruction level parallelism

Advanced branch prediction techniques

Miss rate

Correlated predictor has less misses that simple predictor
with same size.

Correlated predictor has less misses than simple predictor
with unlimited number of entries.
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Exploitation of instruction level parallelism

Advanced branch prediction techniques

Tournament prediction

Combines two predictors:
Global information based predictor.
Local information based predictor.

Uses a selector to choose between predictors.
Change among two selectors uses a saturation counter (2
bits).

Advantage:
Allows different behavior for integer and FP.

SPEC:
Integer benchmarks→ global predictor 40%
FP benchmarks→ global predictor 15%.

Uses: Alpha and AMD Opteron.
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Exploitation of instruction level parallelism

Advanced branch prediction techniques

Intel Core i7

Predictor with two levels:
Smaller first level predictor.
Larger second level predictor as backup.

Each predictor combines 3 predictors:
Simple 2-bits predictor.
Global history predictor.
Exit-loop predictor (iterations counter).

Besides:
Indirect jumps predictor.
Return address predictor.
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Exploitation of instruction level parallelism

Introduction to dynamic scheduling

Dynamic scheduling

Idea: hardware reorders instruction execution to decrease
stalls.

Advantages:
Compiled code optimized for one pipeline runs efficiently in
another pipeline.
Correctly manages dependencies that are unknown at
compile time.
Allows to tolerate unpredictable delays (e.g. cache misses).

Drawback:
More complex hardware.
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Exploitation of instruction level parallelism

Introduction to dynamic scheduling

Dynamic scheduling

Effects:
Out of Order execution (OoO).
Out of Order instruction finalization.
May introduce WAR and WAW hazards.

Separation of ID stage into two different stages:
Issue: Decodes instruction and checks for structural
hazards.
Operands fetch: Waits until there is no data hazard and
fetches operands.

Instruction Fetch (IF):
Fetches into instruction register or instruction queue.
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Exploitation of instruction level parallelism

Introduction to dynamic scheduling

Dynamic scheduling techniques

Scoreboard:
Stalls issued instructions until enough resources are
available and there is no data hazard.
Examples: CDC 6600, ARM A8.

Tomasulo Algorithm:
Removes WAR and WAW dependencies with register
renaming.
Examples: IBM 360, Intel Core i7.
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Exploitation of instruction level parallelism
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Exploitation of instruction level parallelism

Speculation

Branches and parallelism limits

As parallelism increases, control dependencies become
a harder problem.

Branch prediction is not enough.

Next step is speculation on branch outcome and
execution assuming that speculation was right.

Instructions fetched, issued and executed.
Need of a mechanism to handle wrong speculations.
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Exploitation of instruction level parallelism

Speculation

Components

Ideas:
Dynamic branch prediction: Selects instructions to be
executed.
Speculation: Executes before control dependencies are
resolved and may eventually undone.
Dynamic scheduling.

To achieve this, must separate:
passing instruction result to another instruction using it.
Instruction finalization.

IMPORTANT: Processor state (register file / memory) not
updated until changes are confirmed.
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Exploitation of instruction level parallelism

Speculation

Solution

Reorder Buffer (ROB):
When an instruction is finalized ROB is written.
When execution is confirmed real target is written.
Instructions read modified data from ROB.

ROB entries:
Instruction type: branch, store, register operation.
Target: Register Id or memory address.
Value: Instruction result value.
Ready: Indication of instruction completion.
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Exploitation of instruction level parallelism
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Exploitation of instruction level parallelism

Multiple issue techniques

CPI < 1

CPI ≥ 1→ Issue one instruction per cycle.

Multiple issue processors (CPI < 1→ IPC > 1):

Statically scheduled superscalar processors.
In-order execution.
Variable number of instructions per cycle.

Dynamically scheduled superscalar processors.
Out-of-order execution.
Variable number of instructions per cycle.

VLIW processors (Very Long Instruction Word).
Several instructions into a packet.
Static scheduling.
Explicit ILP by the compiler.
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Exploitation of instruction level parallelism

Multiple issue techniques

Approaches to multiple issue

Several approaches to multiple issue.
Static superscalar.
Dynamic superscalar.
Speculative superscalar.
VLIW/LIW.
EPIC.
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Exploitation of instruction level parallelism

Multiple issue techniques

Static superscalar

Issue: Dynamic.
Hazards detection: Hardware.
Scheduling: Static.
Discriminating feature:

In-order execution.

Examples:
MIPS.
ARM Cortex-A7.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 33/55

http://www.arcos.inf.uc3m.es


Exploitation of instruction level parallelism

Multiple issue techniques

Dynamic Superscalar

Issue: Dynamic.
Hazards detection: Hardware.
Scheduling: Dynamic.
Discriminating feature:

Out-of-Order execution with no speculation.

Examples: None.
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Exploitation of instruction level parallelism

Multiple issue techniques

Speculative superscalar

Issue: Dynamic.
Hazards detection: Hardware.
Scheduling: Speculative dynamic.
Discriminating feature:

Out-of-Order execution with speculation.

Examples:
Intel Core i3, i5, i7.
AMD Phenom.
IBM Power 7
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Exploitation of instruction level parallelism

Multiple issue techniques

VLIW

Packs several operations into a single instruction.

Example instruction in ISA VLIW:
One integer instruction or a branch.
Two independent floating point operations.
Two independent memory references.

IMPORTANT: Code must exhibit enough parallelism.
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Exploitation of instruction level parallelism

Multiple issue techniques

VLIW / LIW

Issue: Static.
Hazards detection: Mostly software.
Scheduling: Static.
Discriminating feature:

All hazards determined and specified by the compiler.

Examples:
DSPs (e.g. TI C6x).
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Exploitation of instruction level parallelism

Multiple issue techniques

Problems with VLIW

Drawbacks from original VLIW model:
Complexity of finding statically enough parallelism.
Generated code size.
No hazard detection hardware.
More binary compatibility problems than in regular
superscalar designs.

EPIC tries to solve most of this problems.
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Exploitation of instruction level parallelism

Multiple issue techniques

EPIC

Issue: Mostly static.
Hazards detection: Mostly software.
Scheduling: Mostly static.
Discriminating feature:

All hazards determined and specified by compiler.

Examples:
Itanium.
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Exploitation of instruction level parallelism

ILP limits

ILP limits

To study maximum ILP we model an ideal processor.

Ideal processor:
Infinite register renaming: All WAR and WAW hazards
can be avoided.
Perfect branch prediction: All conditional branch
predictions are a hit.
Perfect jump prediction: All jumps (include returns) are
correctly predicted.
Perfect memory address alias analysis: A load can be
safely moved before a store if address is not identical
Perfect caches: All cache accesses require one clock
cycle (always hit).
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Exploitation of instruction level parallelism

ILP limits

Available ILP

20 40 60 80 100 120 140 160

gcc

expresso

li

fppp

doduc

tomcatv

54.8

62.6

17.9

75.2

118.7

150.1

Instructions per cycle
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Exploitation of instruction level parallelism

ILP limits

However . . .

More ILP implies more control logic:
Smaller caches.
Longer clock cycle.
Higher energy consumption.

Practical limitation:
Issue from 3 to 6 instructions per cycle.
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Exploitation of instruction level parallelism
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Exploitation of instruction level parallelism

Thread level parallelism

Why TLP?

Some applications exhibit more natural parallelism than
the achieved with ILP.

Servers, scientific applications, . . .

Two models emerge:
Thread level parallelism (TLP):

Thread: Process with its own instructions and data.
May be either part of a program or an independent program.
Each thread has an associated state (instructions, data, PC,
registers, . . . ).

Data level parallelism (DLP):
Identical operation on different data items.
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Exploitation of instruction level parallelism

Thread level parallelism

TLP

ILP exploits implicit parallelism within a basic block or a
loop.

TLP uses multiple threads of execution inherently parallel.

TLP Goal:
Use multiple instruction flows to improve:

Throughput in computers using many programs.
Execution time of multi-threaded programs.
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Exploitation of instruction level parallelism

Thread level parallelism

Multi-threaded execution

Multiple threads share processor functional units
overlapping its use.

Need to replicate state n-times.
Register file, PC, page table (when threads do note belong
to the same program).
Shared memory through virtual memory mechanisms.
Hardware for fast thread context switch.

Kinds:
Fine grain: Thread switch in every instruction.
Coarse grain: Thread switch in stalls (e.g. Cache miss).
Simultaneous: Fine grain with multiple-issue and dynamic
scheduling.
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Exploitation of instruction level parallelism

Thread level parallelism

Fine-grain multithreading

Switches between threads in each instruction.
Interleaves thread execution.
Usually does round-robin.
Threads in a stall are excluded from round-robin.
Processor must be able to switch every clock cycle.

Advantage:
Can hide short and long stalls.

Drawback:
Delays individual thread execution due to sharing.

Example: Sun Niagara.
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Exploitation of instruction level parallelism

Thread level parallelism

Coarse grain multithreading

Switch thread only on long stalls.
Example: L2 cache miss.

Advantages:
No need for a highly fast thread switch.
Does not delay individual threads.

Drawbacks:
Must flush or freeze the pipeline.
Needs to fill pipeline with instructions from the new thread
(latency).

Appropriate when filling the pipeline takes much shorter
than a stall.

Example: IBM AS/400.
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Exploitation of instruction level parallelism

Thread level parallelism

SMT: Simultaneous multithreading

Idea: Dynamically scheduled processors already have
many mechanisms to support multithreading.

Large sets of virtual registers.
Registers for multiple threads.

Register renaming.
Avoid conflicts in access to registers from threads.

Out-of-order finalization.

Modifications:
Per thread renaming table.
Separate PC registers.
Separate ROB.

Examples: Intel Core i7, IBM Power 7
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Exploitation of instruction level parallelism

Thread level parallelism

TLP: Summary

Superscalar

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 stall

Fine Grain Coarse Grain SMT Multiprocessor
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Exploitation of instruction level parallelism
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Exploitation of instruction level parallelism

Conclusion

Summary

Loop unrolling allows hiding stall latencies, but offers a
limited improvement.

Dynamic scheduling manages stalls unknown at
compile-time.

Speculative techniques built on branch prediction and
dynamic scheduling.

Multiple issue in ILP is limited in practice from 3 to 6
instructions.

SMT is an approach to TLP within one core.
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