
Introduction to instruction level parallelism

Introduction to instruction level parallelism
Computer Architecture

J. Daniel García Sánchez (coordinator)
David Expósito Singh

Francisco Javier García Blas

ARCOS Group
Computer Science and Engineering Department

University Carlos III of Madrid

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 1/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

1 Introduction to pipelining

2 Hazards

3 Multi-cycle operations

4 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 2/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Pipeline

Implementation technique to execute multiple instructions
overlapped in time.

A costly operation is divided into simple sub-operations.

Sub-operations are executed into stages.

Effects:

Increases throughput .

Latency is not decreased.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 3/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Pipeline

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

IF1

IF2 ID1

IF3 ID2 EX1

IF4 ID3 EX2 M1

IF5 ID4 EX3 M2 WB1

IF6 ID5 EX4 M3 WB2

IF7 ID6 EX5 M4 WB3

IF8 ID7 EX6 M5 WB4

P
ip

el
in

e
fil

lin
g

N
or

m
al

Latency:
One instruction
requires 5 stages.
5 cycles.

Throughput:
One instruction
finalized per cycle
(once pipeline is
full).
1 instruction per
cycle.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 4/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Pipeline stages

Simplified model (MIPS):
5 stages.
More realistic models require more stages

Stages:
Instruction Fetch.
Instruction Decode.
Execution.
Memory.
Write-back.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 5/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Instruction Fetch
P

C
A

D
D

R

M
em

or
y

Sum
4

IR

MUX

Next PC

Send PC to memory.
Read instruction.
Update PC.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 6/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Instruction Decode

IR

R1

R2

RD

Inm

R
eg

is
te

rs

Sign
Ext

MUX

MUX

Next PC

ALU

Decode instruction.
Read registers.
Sign extend offsets.
Compute possible branch
address.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 7/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Execution

ALU

Next PC or R1

Inm or R2

CMP
Zero

R1

MUX
Next PC Next PC

Dir or
Data

ALU operation on
registers.
Alternatively, compute
effective address.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 8/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Memory

Data
Memory

Dir

Data

Data Read from or write into
memory.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 9/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Write back

MUX

Data Mem.

ALU

Regs Write result into register
file.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 10/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

General architecture
P

C
A

D
D

R

M
em

or
y

Sum
4

IR

R1

R2

RD

Inm

R
eg

is
te

rs

Sign
Ext

Next PC

MUX

MUX

ALU

CMP
Zero

MUX

Data
Memory

MUX

write-back

Fetch Decode Execution Memory Write-back

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 11/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Pipeline effects

An n depth pipeline multiplies by n the needed bandwidth
compared to a non-pipelined version with the same clock
rate.

Caching, caching, . . .

Separation among data and instructions caches
suppresses some memory conflicts

Instructions in the pipeline should not try to use the same
resource at the same time.

Pipelining registers between successive stages.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 12/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Stages communication
P

C
A

D
D

R

M
em

or
y

Sum
4

IF
/ID

R1

R2

RD

Inm

R
eg

is
te

rs

Sign
Ext

ID
/E

X

Next PC

MUX

MUX

ALU

CMP
Zero

Next PC

RD

E
X

/M
E

M

MUX

Data
Memory

RD

M
E

M
/W

B

MUX

WB data

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 13/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Pipeline over time

Time (cycles)

In
st

r

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

IMem Reg ALU DM Reg

IMem Reg ALU DM Reg

IMem Reg ALU DM Reg

IMem Reg ALU DM Reg

Register read in second half of cycle.
Register write in first half of cycle.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 14/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Introduction to pipelining

Example

Non-pipelined processor.
Clock cycle: 1 ns.
40% ALU operations→ 4 cycles.
20% branch operations→ 4 cycles.
40% memory operations→ 5 cycles.
Pipeline overhead→ 0.2 ns.

Which is the pipeline speedup?

torig = cycleclock ×CPI = 1ns× (0.6× 4 + 0.4× 5) = 4.4ns

tnew = 1ns + 0.2ns = 1.2ns

S =
4.4ns
1.2ns

= 3.7

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 15/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

1 Introduction to pipelining

2 Hazards

3 Multi-cycle operations

4 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 16/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Hazard

A hazard is a situation preventing next instruction to start
at the expected clock cycle.

Hazards reduce performance in pipelined architectures.

Types of hazards:
Structural hazard.
Data hazard.
Control hazard.

Simple approach to hazards:
Stall the instruction flow.
Already started instructions will continue.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 17/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Structural hazards

2 Hazards
Structural hazards
Data hazards
Control hazards

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 18/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Structural hazards

Structural hazard

Happens when hardware cannot support all possible
instruction sequences.

In the same cycle two pipeline stages need to use the
same resource.

Reasons:
Functional units that are not fully pipelined.
Functional units which are not duplicated.

These hazards can be avoided at the cost of a more
expensive hardware.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 19/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Structural hazards

Pipeline speedup

Speedup:
tnonpipelined : Average instruction time in non-pipelined
architecture.
tpipelined : Average instruction time in pipelined architecture.

S =
tnonpipelined

tpipelined
=

CPInonpipelined × cyclenonpipelined

CPIpipelined × cyclepipelined

Ideal case: pipelined CPI is 1.
Need to add stall cycles per instruction.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 20/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Structural hazards

Pipeline speedup

In case of non-pipelined processor:
CPI = 1, with cyclenonpipelined > cyclepipelined .
cyclenonpipelined = N × cyclepipelined .
N → Pipeline depth.

Speedup

S =
N

1 + stalls per instruction

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 21/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Structural hazards

Structural hazards: example

Time (cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

LOAD

Instr + 1

Instr + 2

Instr + 3

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

Assuming single port memory.
cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 22/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Structural hazards

Structural hazards: example

Time (cycles)

In
st

r

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

LOAD

Instr + 1

Instr + 2

Instr + 3

Instr + 4

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

stall stall stall stall stall

Mem Reg

Assuming single port memory.
cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 23/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Structural hazards

Example

Two alternative designs:
A: No structural hazards.

Clock cycle → 1ns
B: With structural hazards.

Clock cycle → 0.9ns

Data access instructions with hazards→ 30%.

Which one is the fastest alternative?

tinst(A) = CPI × cycle = 1× 1ns = 1ns

tinst(B) = CPI×cycle = (0.7×1+0.3×(1+1))×0.9ns = 1.17ns

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 24/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

2 Hazards
Structural hazards
Data hazards
Control hazards

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 25/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Data hazard

A data hazard happens when the pipeline changes the
read/write access to operands ordering.

Example

I1 : dadd $1 , $2 , $3
I2 : dsub $4 , $1 , $5
I3 : and $6 , $1 , $7
I4 : or $8 , $1 , $9
I5 : xor $10 , $1 , $11

I2 reads R1 before than I1
modifies it.
I3 reads R1 before than I1
modifies it.
I4 gets the right value.

Register file is read in
second half of cycle.

I5 gets the right value.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 26/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Data hazards

Time (cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

dadd $1, $2, $3

dsub $4, $1, $5

and $6, $1, $7

or $8, $1, $9

xor $10, $1, $11

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

Mem Reg ALU Mem Reg

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 27/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Stalls in data hazards

Time (cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

dadd $1, $2, $3

dsub $4, $1, $5

and $6, $1, $7

or $8, $1, $9

xor $10, $1, $11

Mem Reg ALU Mem Reg

stall stall Mem Reg ALU Mem Reg

Mem Reg ALU Mem

Mem Reg ALU

Mem Reg

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 28/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Data hazards: RAW

Read After Write.
Instruction i+1 tries to read a datum before instruction i
writes it.

Example

i : add $1, $2, $3
i+1: sub $4, $1, $3

If there is a data dependency, instructions:
Can neither be executed in parallel nor
overlap.
Instruction sub needs value from $1
produced by instruction add.

Solutions:
Hardware detection.
Compiler control.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 29/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Data hazards: WAR

Write After Read.
Instruction i+1 modifies operand before instruction i reads
it.

Example

i : sub $4, $1, $3
i+1: add $1, $2, $3
i+2: mul $6, $1, $7

Also known as anti-dependence in
compiler technology.

Name reuse.
Instruction add modifies $1 before sub
reads it.

Cannot happen in a MIPS with 5-stages pipeline.
All instructions with 5 stages.
Reads always happen in stage 2.
Writes always happen in stage 5.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 30/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Data hazards: WAW

Write After Write.
Instruction i+1 modifies operand before instruction i
modifies it.

Example

i : sub $1, $4, $3
i+1: add $1, $2, $3
i+2: mul $6, $1, $7

Also known as output dependency in
compiler technology

Name reuse.
Instruction add modifies $1 before sub
modifies it.

Cannot happen in a MIPS with 5-stages pipeline.
All instructions with 5 stages.
Writes always happen in stage 5.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 31/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Solutions to data hazards

RAW dependencies:
Forwarding.

WAR and WAW dependencies:
Register renaming.

Done statically by compiler.
Done dynamically by hardware.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 32/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Forwarding

Technique to avoid some data stalls.

Basic idea:
No need to wait until result is written into register file.
Result is already in pipeline registers.
Use that value instead of the one from the register file.

Implementation:
Results from EX and MEM stages written into ALU input
registers.
Forwarding logic selects between real input and forwarding
register.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 33/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Forwarding

dadd $1, $2, $3

dsub $4, $1, $5

and $6, $1, $7

or $8, $1, $9

xor $10, $1, $11

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 34/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

forwarding limitations

Not every hazard can be avoided with forwarding.
You cannot travel backwards in time!

Example

I1 : lw $1 , (0) $2
I2 : dsub $4 , $1 , $5
I3 : and $6 , $1 , $7
I4 : or $8 , $1 , $9
I5 : xor $10 , $1 , $11

IM Reg ALU DM Reg

IM Reg ALU DM Reg

If hazard cannot be avoided, a stall must be introduced.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 35/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Data hazards

Stalls in memory accesses

lw $1, 0($2)

dsub $4, $1, $5

and $6, $1, $7

or $8, $1, $9

xor $10, $1, $11

IM Reg ALU DM Reg

IM Reg stall ALU DM Reg

IM stall Reg ALU DM Reg

stall IM Reg ALU DM Reg

IM Reg ALU DM Reg

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 36/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

2 Hazards
Structural hazards
Data hazards
Control hazards

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 37/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Control hazard

A control hazard happens in a PC modification instruction.

Terminology:
Taken branch: If PC is modified.
Not-taken branch: if PC is not modified.

Problem:
Pipelining assumes that branch will not be taken.
What if, after ID, we find out that branch needs to be taken?

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 38/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Alternatives in control hazards

Compile time: Fixed asumption for the full program
execution.

Software may try to minimize impact if hardware behavior is
known.
Compiler can do this job.

Run-time: Variable behavior during program execution.
Hardware tries to predict what software will do.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 39/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Control hazards: static solutions

1 Pipeline freezing.
2 Fixed prediction.

Always not taken.
Always taken.

3 Delayed branching.

In many cases, compilers need to know what will be done
to reduce impact.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 40/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Pipeline freezing

Idea: If current instruction is a branch→ stop or flush
subsequent instructions from pipeline until target is known.

Run-time penalty is known.
Software (compiler) cannot do anything.

Branch target is known at ID stage.
Repeat next instruction FETCH.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 41/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Repeating FETCH

Branch instr.

Instr. i+1

Instr. i+2

Instr. i+3

IF ID EX M WB

IF IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Repeating IF is equivalent to a stall.
A branch stall may lead to a performance loss from 10%
to 30%.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 42/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Fixed prediction: not taken

Idea: Assume branch will be not taken.
Avoid updating processor state until branch not taken is
confirmed.
If branch is finally taken, subsequent instructions are retired
from pipeline and instruction from target address is fetched.

Transform instructions into NOPs.

Compiler task:
Organize code setting most frequent option as not-taken
and inverting condition if needed.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 43/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Fixed prediction: not taken

Branch instr.

Instr. i+1

Branch target

Instr. j+1

IF ID EX M WB

IF

IF ID EX M WB

IF ID EX M WB

When hardware knows the branch will be taken the new
instruction (j+1) is fetched.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 44/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Fixed prediction: taken

Idea: Assume branch will be taken.
As soon as branch instruction is decoded and target
address is computed, target instruction starts to be fetched.
In a 5-stages pipeline does not provide improvements.

Target address is not known before branch outcome is
known.
Useful in processors with complex and slow conditions.

Compiler task:
Organize code setting the most frequent option as taken
and inverting condition if needed.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 45/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Delayed branching

Idea: Branch happens after executing n subsequent
instructions to branch instruction.

In a 5-stages pipeline→ 1 delay slot.

Example

I0 : bnez $1 , e t i q
I1 : addi $2 , $2 , 1
I2 : mul $3 , $2 , $4
. . .
IN : sub $1 , $1 , 1
IN +1: mul $3 , $3 , $4

Instructions I1, I2, . . . , IN are
executed independently of the
branch condition outcome.
Instruction IN+1 is only executed
if branch is not taken.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 46/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Delayed branching

Branch instr.

Delayed instr.

Next or target instr.

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Case with delayed branch and one delay slot.
One instruction is always executed before taking the
branch.
Programmer are responsible for putting useful code in the
slot.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 47/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Compilers and delay slot

Original

add $1 , $2 , $3
beqz $2 , e t i q
nop
xor $5 , $6 , $7

e t i q : and $8 , $9 , $10

Improved

beqz $2 , e t i q
add $1 , $2 , $3
xor $5 , $6 , $7

e t i q : and $8 , $9 , $10

Original

e t i q : add $1 , $2 , $3
xor $5 , $6 , $7
beqz $5 , e t i q
nop
and $8 , $9 , $10

Improved

add $1 , $2 , $3
e t i q : xor $5 , $6 , $7

beqz $5 , e t i q
add $1 , $2 , $3
and $8 , $9 , $10

Original

add $1 , $2 , $3
beqz $1 , e t i q
nop
xor $5 , $6 , $7

e t i q : and $8 , $9 , $10

Improved

add $1 , $2 , $3
beqz $1 , e t i q
xor $5 , $6 , $7

e t i q : and $8 , $9 , $10

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 48/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Delayed branching

Compiler effectiveness for the case of 1 slot.
Fills around 60% of slots.
Around 80% of executed instructions in slots useful for
computations.
Around 50% of slots usefully filled.

Using deeper pipelines and multiple instruction issue, more
slots are needed.

Abandoned in favor of more dynamic approaches.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 49/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Performance and fixed prediction

Number of stalls depends on:
Branch frequency.
Branch penalty.

Penalty cycles per branch:

cyclesbranch = frequencybranch × penaltybranch

Speedup:

S =
depthpipeline

1 + frequencybranch × penaltybranch

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 50/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Practical case

MIPS R4000 (deeper pipeline).
3 stages before knowing branch target.
1 additional stage to evaluate condition.
Assuming no data stalls in comparisons.
Branch frequency:

Unconditional branching: 4%.
Conditional branching, not-taken: 6%
Conditional branching, taken: 10%

branch Penalty
scheme unconditional not-taken taken
Flush pipeline 2 3 3
Predict taken 2 3 2
Predict not-taken 2 0 3

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 51/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Solution

branch Branch Total
scheme unconditional not-taken taken
Frequency 4% 6% 10% 20%
Flush pipeline 0.04×2 = 0.08 0.06×3 = 0.18 0.10×3 = 0.30 0.56
Predict taken 0.04×2 = 0.08 0.06×3 = 0.18 0.10×2 = 0.20 0.46
Predict not-taken 0.04×2 = 0.08 0.06×0 = 0.00 0.10×3 = 0.30 0.38

Contribution over ideal CPI

Speedup of predicting taken over
flushing pipeline

S =
1 + 0.56
1 + 0.46

= 1.068

Speedup of predicting not taken over
flushing pipeline

S =
1 + 0.56
1 + 0.38

= 1.130

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 52/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Branching run-time alternatives

Each conditional branch is strongly biased.
Either is taken most of the time,
or it is not taken most of the time.

Prediction based on execution profile:
Run once to collect statistics.
Use the collected information to modify code and take
advantage of information.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 53/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Predictions with execution profile

SPEC92: Branch frequency 3% to 24%
Floating point:

Missprediction rate.
Average: 9%.
Standard deviation: 4%.

Integer:
Missprediction rate.

Average: 15%.
Standard deviation: 5%.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 54/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Predictions with execution profile

5 10 15 20

compress
eqntott

espresso
gcc

li
doduc

ear
hydro2d

mdljdp
su2cor

12
22

18
11

12
4

6
9

10
15

Missprediction rate (%)
cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 55/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Dynamic prediction: BHT

Branch History Table:
Index: Lower bits of address (PC).
Value: 1 bit (branch taken or not taken last time).

Predict Taken (11)

T

Predict Taken (10)

NT

T

Predict Not Taken (00)

NT

NT

Predict Not Taken (01)

T
NT

T

Improvements: Use more bits to improve precision.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 56/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

BHT: Precision

Missprediction rate:
Wrong prediction in branch outcome.
History of different branch in table entry.

BHT results of 2 bits and 4K entries:

0 2 4 6 8 10 12 14 16 18

eqntott
espresso

gcc
li

spice
doduc
fpppp

matrix300
nasa7

18
5

12
10

9
5

9
0

10

Missprediction rate

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 57/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Hazards

Control hazards

Dynamic branch prediction

Why does branch prediction work?
Algorithms exhibit regularities.
Data structures exhibit regularities.

Is dynamic prediction better than static prediction?
It looks like.
There is a small number of important branches in programs
with dynamic behavior.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 58/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Multi-cycle operations

1 Introduction to pipelining

2 Hazards

3 Multi-cycle operations

4 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 59/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Multi-cycle operations

Floating point operations

One-cycle floating point operations?
Having an extremely long clock cycle.

Impact on global performance.
Very complex FPU control logic.

Huge amount of resources for FP logic.

Alternative: Floating point pipelining.
Execution stage may be repeated several times.
Multiple functional units in EX.

Example: Integer unit, FP and integer multiplier, FP adder,
FP and integer divider.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 60/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Multi-cycle operations

Floating point pipeline

EX stage now has a duration of more than 1 clock cycle.

IF ID EX (integer unit) MEM WB

EX (int/fp multiplier)

EX (fp adder)

EX (int/fp divider)

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 61/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Multi-cycle operations

Latency and initiation interval

Latency: Number of cycles between instruction producing
the result and instruction using the result.
Initiation interval: Number of cycles between issue of two
instructions using the same functional units

Operation Latency Initiation interval
Integer ALU 0 1
Loads 1 1
FP addition 3 1
FP multiplication 6 1
FP division 24 25

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 62/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Conclusion

1 Introduction to pipelining

2 Hazards

3 Multi-cycle operations

4 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 63/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Conclusion

Summary

A pipelined architecture requires higher memory
bandwidth.
Pipeline hazards cause stalls.

Performance degradation.

Stalls due to data hazards may be mitigated with compiler
techniques.
Stalls due to control hazards many be reduced with:

Compile time alternatives.
Run-time alternatives.

Multi-cycle operations allow for shorter clock-cycles.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 64/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Conclusion

References

Computer Architecture. A Quantitative Approach
5th Ed.
Hennessy and Patterson.
Sections C.1, C.2 y C.5

Recommended exercises:
C.1, C.2, C.3, C.4 y C.5.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 65/66

http://www.arcos.inf.uc3m.es

Introduction to instruction level parallelism

Conclusion

Introduction to instruction level parallelism
Computer Architecture

J. Daniel García Sánchez (coordinator)
David Expósito Singh

Francisco Javier García Blas

ARCOS Group
Computer Science and Engineering Department

University Carlos III of Madrid

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 66/66

http://www.arcos.inf.uc3m.es

	Introduction to pipelining
	Hazards
	Structural hazards
	Data hazards
	Control hazards

	Multi-cycle operations
	Conclusion

