
Solutions to exercises on Instruction Level Parallelism

J. Daniel García Sánchez (coordinator)
David Expósito Singh
Javier García Blas

Computer Architecture
ARCOS Group

Computer Science and Engineering Department
University Carlos III of Madrid

1. Exam exercises

Exercise 1 June 2015 exam.

Given a MIPS processor with a pipeline that has two separate register �les (one for integers and
the other one for �oating point numbers). The integer register bank has 32 registers. The �oating-point
register bank has 16 double-precision registers ($f0, $f2, . . . , $f30).

We assume that we have enough fetch and decode bandwidth to execute one instruction per cycle
without stalls (with the exception of stalls associated to data dependencies).

Table 1 shows the extra latencies related to some types of instructions. These latencies have to be
considered when there are data dependencies. When there are no dependencies, these extra latencies
are not applicable.

Cuadro 1: Additional latencies per instruction
Instruction Additional latency Operation

ldc1
+2 Loads a 64 bit value into a �oating point register.

sdc1
+2 Stores a 64 bit value into main memory.

add.d
+4 Adds double precision �oating point registers

mul.d
+6 Multiplies double precision �oating point registers.

addi
+0 Adds a value and an integer register.

subi
+0 Subtracts a value from an integer register.

bnez
+1 Branches if a register value is zero.

Instruction bnez uses delayed branching with one delay slot.
We intend to execute the following code in the previous architecture:

loop : ldc1 $f0 , ($t0)
ldc1 $f2 , ($t1)

J. Daniel Garcia et al.

cbed ARCOS@uc3m
1 Computer Architecture

add.d $f4 , $f0 , $ f2
mul.d $f4 , $f4 , $ f6
sdc1 $f4 , ($t2)
addi $t0 , $t0 , 8
addi $t1 , $t1 , 8
subi $t3 , $t3 , 1
bnez $t3 , loop
addi $t2 , $t2 , 8

The initial register values are:

$t0: 0x00100000.

$t1: 0x00140000.

$t2: 0x00180000.

$t3: 0x00000100.

Complete the following tasks:

1. Enumerate the RAW dependencies related to the previous code.

2. Show all the stalls that are produced when one single code iteration is being executed. Show the
overall number of cycles per iteration.

3. Schedule the loop instructions in order to reduce the number of stalls.

4. Unroll the loop in the following way: each unrolled iteration processes four array positions. Obtain
the resulting speedup. Note: use real register names ($f0, $f2, . . . , $f30).

IMPORTANT: The solutions that do not use real existing registers (e.g.: $f2' o $f2�) will not
be considered valid.

Solution 1

Dependencies If the instructions are numbered sequentially starting at I1 (Up to I10), the following
RAW dependencies can be identi�ed:

1. $f0: I1 → I3.

2. $f2: I2 → I3.

3. $f4: I3 → I4.

4. $f4: I4 → I5.

5. $t3: I8 → I9.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
2 Computer Architecture

Stalls The following are the stops that occur when executing the code:

ldc1 $f0 , ($t0) #I1

ldc1 $f2 , ($t1) #I2

<s t a l l > x 2
add.d $f4 , $f0 , $ f2 #I3

<s t a l l > x 4
mul.d $f4 , $f4 , $ f6 #I4

<s t a l l > x 6
sdc1 $f4 , ($t2) #I5

addi $t0 , $t0 , 8 #I6

addi $t1 , $t1 , 8 #I7

subi $t3 , $t3 , 1 #I8

bnez $t3 , buc le #I9

addi $t2 , $t2 , 8 #I10

In total, 22 cycles are required.

Loop scheduling Reordering instructions can reduce the number of stalls:

ldc1 $f0 , ($t0) #I1

ldc1 $f2 , ($t1) #I2

addi $t0 , $t0 , 8 #I6

addi $t1 , $t1 , 8 #I7

add.d $f4 , $f0 , $ f2 #I3

subi $t3 , $t3 , 1 #I8

<s t a l l > x 3
mul.d $f4 , $f4 , $ f6 #I4

<s t a l l > x 6
sdc1 $f4 , ($t2) #I5

bnez $t3 , buc le #I9

addi $t2 , $t2 , 8 #I10

A total of 19 cycles are required.

Unrolled loop Unrolling the loop with a factor of four obtains:

ldc1 $f0 , ($t0)
ldc1 $f2 , ($t1)
ldc1 $f8 , 8($t0)
ldc1 $f10 , 8($t1)
ldc1 $f14 , 16($t0)
ldc1 $f16 , 16($t1)
ldc1 $f20 , 24($t0)
ldc1 $f22 , 24($t1)
add.d $f4 , $f0 , $ f2
add.d $f12 , $f8 , $ f10
add.d $f18 , $f14 , $ f16
add.d $f24 , $f20 , $ f22
<s t a l l >
mul.d $f4 , $f4 , $ f6
mul.d $f12 , $f12 , $ f6
mul.d $f18 , $f18 , $ f6
mul.d $f24 , $f24 , $ f6
addi $t0 , 32
addi $t1 , 32
<s t a l l >
sdc1 $f4 , ($t2)
sdc1 $f12 , 8($t2)
sdc1 $f18 , 16($t2)
sdc1 $f24 , 24($t2)
subi $t3 , 4
bnez $t3 , buc le
addi $t2 , 32

In total, 27 cycles are required every 4 iterations. That is 6,75 cycles per iteration

Exercise 2 January 2015 exam.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
3 Computer Architecture

The following code fragment is stored starting from memory address 0x1000100C in a machine
where all instructions occupy 4 bytes:

loop : lw $r2 , 0($r0)
addi $r3 , $r2 , 20
sw $r3 , 0($r1)
addi $r0 , $r0 , 4
addi $r1 , $r1 , 4
bnez $r2 , loop

This code runs in a machine with a L1 data cache which is 2 ways set-associative and with a size of
32 KB and a L1 instruction cache with the same characteristics. It also has a L2 uni�ed cache which
is 8 ways set-associative with a size of 1MB. In both cases the line size is 32 bytes. It is assumed that
a cache hit in L1 requires 4 cycles, a cache hit in L2 requires 14 additional cycles, and penalty for
bringing a memory block from main memory to L2 is 80 cycles. All caches have a write-back policy.

Initially, value of registers are:

$r0: 0x00010000.

$r1: 0x00080000.

Starting from location 0x00010000 all the values in memory are di�erent from zero until location
0x000100FC. In memory location 0x000100FC there is a zero value.

1. Determine which should be the average access time assuming that a program (di�erent from the
one above) performs on average 2 data accesses per instruction and has the following miss rate:

L1 instructions: 10%

L1 data: 5%

L2: 2%

2. Determine the number of misses produced during the execution of the provided code fragment
for data L1 cache, instruction L1 cache, and L2 cache.

3. Prepare a time diagram for a MIPS architecture with a 5-stage pipeline, for the �rst loop iteration
assuming that initially there are no data and no instructions in caches and with the following
considerations:

There is no forwarding hardware.

Architecture allows that an instruction writes a register and another instruction reads that
same register without problems.

Branches are handled �ushing the pipeline.

E�ective branch addresses are computed in the execution stage.

NOTE:

4. Keep in mind when preparing the diagram the stalls due to misses in cache hierarchy for instruc-
tions (stage IF) as well as for data reads and writes (stage M).

5. Repeat the time diagram for the second iteration.

Solution 2

J. Daniel Garcia et al.

cbed ARCOS@uc3m
4 Computer Architecture

Average access time Regarding the accesses to the level 1 cache, there are 2 data access for each
access to instructions. Therefore, the failure rate is obtained through a weighted average:

mL1 =
mL1I + 2 ·mL1D

3

mL1 =
0,1 + 2 · 0,05

3
=

0,2

3
= 0,0667

Therefore the average access time would be:

T = 4 +mL1 · (14 +mL2 · 80) = 4 + 0,0667 · (14 + 0,02 · 80) = 5,04 ciclos

Number of misses The loop is executed 28

4 = 26 = 64 iterations.
We will analyze the instructions and data access separately.
The �rst statement is stored in the 0x1000100C address. The last Instruction is stored at address

0x1000100C +(6− 1) ∗ 4 = 0x10001020.
In the �rst iteration, the �rst instruction generates a cache miss and brings the address block

0x10001000 - 0x1000101F, which contains the instruction. The following instructions (I2, I3, I4,
And I5) generate cache hits. Lastly, instruction I6 re-generates a miss. Therefore, the �rst iteration
generates 2 misses and 4 hits. The rest of iterations generate hits in all cases.

Since the loop is executed 64 times, access to the instructions generates following accesses:

L1I misses: 2

L1I hits: 4 + 63 · 6

L2 misses: 1

L2 hits: 0

At each iteration of the loop, a memory address is read in the range 0x00010000 - 0x000100FC.
This corresponds to 28

25
= 8 cache lines.

In the same way, values are written in the 0x00080000 0x000800FC, which are written in 8 lines
of cache. Given that caches are set-associative, there is no con�ict between the data read and written.
As no L1 cache line is replaced there are no writes in the L2 cache.

1. L1D misses: 8 reads + 8 writes

2. L1D hits: 56 reads + 56 writes

3. L2 misses: 8 reads

4. L2 hits: 0

Time diagram for �rst iteration If the instructions are numbered as follows:

buc le : lw $r2 , 0($r0) #1

addi $r3 , $r2 , 20 #2

sw $r3 , 0($r1) #3

addi $r0 , $r0 , 4 #4

addi $r1 , $r1 , 4 #5

bnez $r2 , buc le #6

We have the following RAD dependencies

J. Daniel Garcia et al.

cbed ARCOS@uc3m
5 Computer Architecture

1. $r2: I2 → I1

2. $r3: I3 → I2

3. $r0: I4 → I1

4. $r1: I3 → I5

In the absence of forwarding, when there is RAW dependency, the destination instruction stalls until
completing the WB cycle of the source instruction. Table 2 shows the corresponding timing diagram.

The �rst statement stops 98 cycles (80 + 14 + 4) in the fetch because it is a miss in the entire
memory hierarchy.

The reading of data from the �rst instruction is a read miss and requires 98 cycles as well.

The second instruction is a hit and requires four cycles to perform the L1I cache fetch.

The instruction I3 is a hit and requires four cycles to perform the capture of the L1I cache.

Writing data from instruction I3 is a write miss and requires 98 cycles.

The instruction I4 is a hit and requires four cycles to perform the capture of the L1I cache.

The I4 instruction can not start its memory cycle until I3 memory access is completed.

The instruction I5 is a hit and requires four cycles to perform the L1I instruction fetch.

The I5 instruction can not start its execution cycle until the execution of I4 is �nished.

Instruction I6 is a fault and requires 98 cycles to perform L1I instruction fetch.

Instruction I7 (the next to bnez) can not start fetching until the fetch unit is released.

Although the branch address at the end of the decoding step of I6 is known, the branch direction
(take or non-taken) is not known until the end of the execution step.

In total, 310 cycles are required.

Timing diagram for the second iteration Table 3 shows the corresponding timing diagram. In
total, 28 clock cycles are required.

Exercise 3 October 2014.

Let's consider the following code fragment:

buc le : lw $f0 , 0($r1)
lw $f2 , 0($r2)
mul . f $f4 , $f0 , $ f2
add.d $f6 , $f6 , $ f4
addi $r1 , $r1 , 4
addi $r2 , $r2 , 4
sub $r3 , $r3 , 1
bnez $r3 , buc le

1. Make a list with all possible data dependences , without considering a speci�c structure of
the segmented architecture. For each dependency you must indicate, register, origin instruction,
instruction of destination and type of dependency.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
6 Computer Architecture

In
st
ru
c
ti
o
n

1�
98

99
10
0

10
1

10
2

10
3�
19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8

20
9

21
0

I1
:
lw

$
r2
,
0
($
r0
)

IF
ID

E
X

M
M

M
W
B

I2
:
a
d
d
i
$
r3
,
$
r2
,
2
0

IF
1

IF
2

IF
3

IF
4

�
ID

E
X

M
W
B

I3
:
sw

$
r3
,
0
($
r1
)

IF
1

IF
2

IF
3

IF
4

ID
E
X

M
M

M
M

M
M

I4
:
a
d
d
i
$
r0
,
$
r0
,
4

IF
1

IF
2

IF
3

IF
4

ID
E
X

�
�

I5
:
a
d
d
i
$
r1
,
$
r1
,
4

IF
1

IF
2

IF
3

IF
4

In
st
ru
c
ti
o
n

21
1

21
2

21
3

21
4

21
5�
30
2

30
3

30
4

30
5

30
6

30
7

30
8

30
9

31
0

31
1

31
2

I1
:
lw

$
r2
,
0
($
r0
)

I2
:
a
d
d
i
$
r3
,
$
r2
,
2
0

I3
:
sw

$
r3
,
0
($
r1
)

M
M

M
M

M
W
B

I4
:
a
d
d
i
$
r0
,
$
r0
,
4

�
�

�
�

�
M

W
B

I5
:
a
d
d
i
$
r1
,
$
r1
,
4

ID
�

�
�

�
E
X

M
W
B

I6
:
b
n
e
z
$
r2
,
b
u
c
le

IF
IF

IF
IF

IF
IF

IF
IF

IF
IF

IF
ID

E
X

M

I7
:
?

IF
�
u
sh

I1
:
lw

$
r2
,
0
($
r0
)

IF

C
u
ad
ro

2:
T
im
in
g
d
ia
gr
am

of
th
e
�
rs
t
it
er
at
io
n
of

th
e
ex
er
ci
se

2.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
7 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

I1
:
lw

$
r2
,
0
($
r0
)

IF
IF

IF
IF

ID
E
X

M
M

M
M

W
B

I2
:
a
d
d
i
$
r3
,
$
r2
,
2
0

IF
IF

IF
IF

�
�

ID
E
X

M
W
B

I3
:
sw

$
r3
,
0
($
r1
)

IF
IF

IF
IF

ID
E
X

M
M

M
M

W
B

I4
:
a
d
d
i
$
r0
,
$
r0
,
4

IF
IF

IF
IF

ID
E
X

M

I5
:
a
d
d
i
$
r1
,
$
r1
,
4

IF
IF

IF

In
stru

c
tio

n
22

23
24

25
26

27
28

29
30

I1
:
lw

$
r2
,
0
($
r0
)

I2
:
a
d
d
i
$
r3
,
$
r2
,
2
0

I3
:
sw

$
r3
,
0
($
r1
)

I4
:
a
d
d
i
$
r0
,
$
r0
,
4

W
B

I5
:
a
d
d
i
$
r1
,
$
r1
,
4

IF
ID

E
X

M
W
B

I6
:
b
n
e
z
$
r2
,
b
u
c
le

IF
IF

IF
IF

ID
E
X

M
W
B

I7
:
?

IF
�
u
sh

I1
:
lw

$
r2
,
0
($
r0
)

IF

C
u
ad
ro

3:
T
im
in
g
d
iagram

of
th
e
secon

d
iteration

of
th
e
ex
ercise

2.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
8 Computer Architecture

2. Create a time diagram for a MIPS architecture with a pipeline of 5 stages, with the following
considerations:

There is no forwarding hardware

The architecture allows an instruction to write in a register and other instruction to read
that same register without any problems.

The branches are processed by means of �ushing the pipeline.

Memory references require a clock cycle.

The e�ective branch address is calculated at the execution stage.

3. Determine how many cycles are needed to execute N loop iterations.

4. Create a time diagram for a MIPS architecture with a pipeline of 5 stages with the following
considerations:

There is fordwarding hardware

Assume that bifurcations are treated by predicting all branches as taken.

5. Determine how many cycles are needed to run N iterations of the The conditions of paragraph 4.

Solution 3

Data dependencies If the instructions are numbered from I1 (�rst instruction) to I8 (last instruc-
tion) we have the following dependencies:

$f0: I1 → I3 (RAW)

$f2: I2 → I3 (RAW)

$f4: I3 → I4 (RAW)

$r3: I7 → I8 (RAW)

First timming diagram Given that there is no forwarding, when there is a RAW dependency we
have to wait for the WB of the source instruction before starting the execution of the destination
instruction. Table 4 shows the corresponding timing diagram.

Instruction I3 has a stall until I2 has written the value read in$f2. We can perform the reading
of register �le in the same cycle than the one in which I2 writes in the register �le (cycle 6).

Instruction I4 can not start until the fetch unit is released (cycle 6).

Instruction I4 has a stall until I3 has written the value calculated in $f4. We can perform the
reading of register �le in the same cycle than the one in which I3 writes in the register �le (cycle
9).

Instruction I5 can not start until the Fetch unit is available (cycle 9).

Instruction I8 has a stall until I7 has written the value $r3. We can perform the reading of
register �le in the same cycle in which I7 writes in the register �le (cycle 15).

J. Daniel Garcia et al.

cbed ARCOS@uc3m
9 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

I1
:
lw

$
f0
,
0($

r1
)

ID
ID

E
X

M
W
B

I2
:
lw

$
f2
,
0($

r2
)

IF
ID

E
X

M
W
B

I3
:
m
u
l.f

$
f4
,
$
f0
,
$
f2

IF
�

�
ID

E
X

M
W
B

I4
:
a
d
d
.d

$
f6
,
$
f6
,
$
f4

IF
�

�
ID

E
X

M
W
B

I5
:
a
d
d
i
$
r1
,
$
r1
,
4

IF
ID

E
X

M
W
B

I6
:
a
d
d
i
$
r2
,
$
r2
,
4

IF
ID

E
X

M
W
B

I7
:
su
b
$
r3
,
$
r3
,
1

IF
ID

E
X

M
W
B

I8
:
b
n
e
z
$
r3
,
b
u
c
le

IF
�

�
ID

E
X

M
W
B

I9
:
(sig

a
b
n
e
z
)

IF

I1
:
lw

$
f0
,
0
($
r1
)

IF
ID

E
X

M
W
B

C
u
ad
ro

4:
F
irst

tim
in
g
d
iagram

for
ex
ercise

3.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
10 Computer Architecture

Instruction I9 (the next to bnez) can not start fetching until the fetch unit is available (cycle 15).

Although the branch address is known at the end of the decoding of I8, the branch result (taking
or not taking) is not known until the end of the execution. stage Therefore the instruction fetch
is repeated in the cycle 17.

First cycle estimation To determine the number of cycles, we need to determine how many cycles
are required for any iteration and how many for the last iteration.

The cost of a di�erent iteration of the last is obtained by determining the number of cycles from
the start of execution of I1 until it is executed again. This is 16 cycles.

The cost of the last iteration is obtained by determining the number of cycles until the execution
of Instruction I8 is completed. These are 18 cycles.

Coste = 16 · n+ 2

.

Second cycle estimation Forwarding is now allowed whenever possible and there is no need to
wait for the WB stage.

Table 5 shows the timing diagram:

Instruction I3 can start execution after the memory stage of I2 (cycle 6) because of the forwarding.

Instruction I4 can not start decoding until the decoding unit has been released (cycle 6).

Instruction I4 can start execution after the execution stage of I3 (cycle 7) because of the forwar-
ding.

Instruction I5 can not start the fetch until the fetch unit is released (cycle 6).

Instruction I8 can not start decoding until it has been calculated the value of�3 (cycle 10) and
passed through forwarding (cycle 11).

Second cycle estimation The cost of an iteration di�erent from the last iteration is 10 cycles. The
last iteration requires 14 cycles.

Coste = 10 · n+ 4

Exercise 4 October 2014.

Be the following code fragment:

buc le : lw $f0 , 0($r1)
lw $f2 , 0($r2)
s ub . f $f4 , $f0 , $ f2
mul.d $f4 , $f4 , $ f4
add.d $f6 , $f6 , $ f4
addi $r1 , $r1 , 4
addi $r2 , $r2 , 4
sub $r3 , $r3 , 1
bnez $r3 , buc le

1. Make a list with all possible dependence on data, without considering any speci�c structure of
the segmented architecture. For each dependency you must indicate, register, source instruction,
target instruction and dependency type.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
11 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

I1
:
lw

$
f0
,
0($

r1
)

ID
ID

E
X

M
W
B

I2
:
lw

$
f2
,
0($

r2
)

IF
ID

E
X

M
W
B

I3
:
m
u
l.f

$
f4
,
$
f0
,
$
f2

IF
ID

�
E
X

M
W
B

I4
:
a
d
d
.d

$
f6
,
$
f6
,
$
f4

IF
�

ID
E
X

M
W
B

I5
:
a
d
d
i
$
r1
,
$
r1
,
4

IF
ID

E
X

M
W
B

I6
:
a
d
d
i
$
r2
,
$
r2
,
4

IF
ID

E
X

M
W
B

I7
:
su
b
$
r3
,
$
r3
,
1

IF
ID

E
X

M
W
B

I8
:
b
n
e
z
$
r3
,
b
u
c
le

IF
ID

E
X

M
W
B

I1
:
lw

$
f0
,
0
($
r1
)

IF
ID

E
X

M
W
B

C
u
ad
ro

5:
S
econ

d
tim

e
d
iagram

of
ex
ercise

3.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
12 Computer Architecture

2. Create a time diagram for a MIPS architecture with a pipeline in 5 stages, with the following
considerations:

There is no forwarding hardware.

The architecture allows instructions to write to a register and another instruction to read
that same register in the same clock cycle without any problems

Bifurcations are treated by emptying the pipeline.

Memory references require one clock cycle.

The e�ective branch direction is calculated at the execution stage.

3. Determine how many cycles are needed to execute N loop iterations.

4. Create a time diagram for a MIPS architecture with a pipeline In 5 stages with the following
considerations:

There is a complete forwarding hardware.

Assume that bifurcations are treated by predicting all branches as taken.

5. Determine how many cycles are needed to run N iterations of the The conditions of paragraph 4.

Solution 4

Data dependencies If the instructions are numbered from I1 (�rst statement) to I9 (last instruc-
tion) have the following dependencies:

$f0: I1 → I3 (RAW)

$f2: I2 → I3 (RAW)

$f4: I3 → I4 (RAW, WAW)

$f4: I4 → I5 (RAW)

$r3: I8 → I9 (RAW)

First timing diagram When there is no forwarding, when there is a RAW dependency, it is neces-
sary to wait for the cycle WB from the source instruction before starting the target instruction cycle.
Table 6 shows the corresponding timing diagram.

Instruction I3 has a stall until I2 has written the value read from $f2. We can perform the register
�le reading in the same cycle than the one in which I2 writes in the register bank (cycle 6).

Instruction I4 can not start the fetch until the fetch unit is released (cycle 6).

Instruction I4 has a stall until I3 has written the value calculated in $ f4. We can perform the
reading of the register �le in the same cycle as I3 writes in the register �le (cycle 9).

Instruction I5 can not start the fetch until the fetch unit is released (cycle 9).

Instruction I5 has a stall until I4 has written the value calculated from $f4. We can perform the
reading of the register �le in the same cycle as I4 writes in the register �le (cycle 12).

J. Daniel Garcia et al.

cbed ARCOS@uc3m
13 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

I1
:
lw

$
f0
,
0($

r1
)

IF
ID

E
X

M
W
B

I2
:
lw

$
f2
,
0
($
r2
)

IF
ID

E
X

M
W
B

I3
:
su
b
.f
$
f4
,
$
f0
,
$
f2

IF
�

�
ID

E
X

M
W
B

I4
:
m
u
l.d

$
f4
,
$
f4
,
$
f4

IF
�

�
ID

E
X

M
W
B

I5
:
a
d
d
.d

$
f6
,
$
f6
,
$
f4

IF
�

�
ID

E
X

M
W
B

I6
:
a
d
d
i
$
r1
,
$
r1
,
4

IF
ID

E
X

M
W
B

I7
:
a
d
d
i
$
r2
,
$
r2
,
4

IF
ID

E
X

M
W
B

I8
:
su
b
$
r3
,
$
r3
,
4

IF
ID

E
X

M
W
B

I9
:
b
n
e
z
$
r3
,
b
u
c
le

IF
�

�
ID

E
X

M
W
B

I1
0
:
(n
ex
t
to
b
n
e
z
)

IF
�

I1
:
lw

$
f0
,
0($

r1
)

IF
ID

C
u
ad
ro

6:
F
irst

tim
in
g
d
iagram

for
ex
ercise

4.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
14 Computer Architecture

Instruction I6 can not start the fetch until the fetch unit is released (cycle 12).

Instruction I9 has a stall until I8 has written the value $r3. We can perform the reading of the
register �le in the same cycle in which I7 writes in the register �le (cycle 18).

Instruction I10 (the next to bnez) can not start the fetch until the fetch unit is released (cycle
18).

Although the branch address is known at the end of the Decoding of I9, the branch result (taken
or not takend) is not known until the end of the execution stage. Therefore the fetch up is
repeated in the cycle twenty.

First cycle estimation To determine the number of cycles, we need to determine how many cycles
are require for a generic iteration and how many cycles for the last iteration.

The cost of a di�erent iteration of the last is obtained by determining the number of cycles from
the start of the I1 execution until I1 is started again. This is 19 cycles.

The cost of the last iteration is obtained by determining the number of cycles until the execution
of Instruction I9 is completed. These are 21 cycles.

Coste = 19 · n+ 2.

Second cycle estimation Forwarding is now allowed when is possible to use it and there is no
waiting for the WB stage. Table 7 shows the corresponding timing diagram.

Instruction I3 can start execution after the memory stage of I2 (Cycle 6) because of forwarding.

Instruction I4 can not start decoding until decoding unit is released (cycle 6).

Instruction I4 can start execution after the execution stage of I3 (cycle 7) because of forwarding.

Instruction I5 can not start the fetch until the Fetch unit is available (cycle 6).

Instruction I5 can start execution after the execution stage of I4 (cycle 8) because of forwarding.

Instruction I9 can not start decoding until the value of �3 has been calculated (cycle 11) and
passed via forwarding (Cycle 12).

Second cycle estimation The cost of an iteration di�erent from the last iteration is 11 cycles. The
last iteration requires 15 cycles.

Coste = 11 · n+ 4

Exercise 5 June 2014 exam.

A given processor has the latencies between instructions given by Table 8.
In this machine we want to run the following piece of code:

LOOP: L.D F0 , 0(R1)
L.D F2 , 0(R2)
ADD.D F4 , F0 , F2
S.D F4 , 0(R3)
DADDUI R1 , R1 , #−8
BNE R1 , R4 , LOOP

Initially registers have the following values:

J. Daniel Garcia et al.

cbed ARCOS@uc3m
15 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

I1
:
lw

$
f0
,
0($

r1
)

IF
ID

E
X

M
W
B

I2
:
lw

$
f2
,
0
($
r2
)

IF
ID

E
X

M
W
B

I3
:
su
b
.f
$
f4
,
$
f0
,
$
f2

IF
�

ID
E
X

M
W
B

I4
:
m
u
l.d

$
f4
,
$
f4
,
$
f4

IF
�

ID
E
X

M
W
B

I5
:
a
d
d
.d

$
f6
,
$
f6
,
$
f4

IF
ID

E
X

M
W
B

I6
:
a
d
d
i
$
r1
,
$
r1
,
4

IF
ID

E
X

M
W
B

I7
:
a
d
d
i
$
r2
,
$
r2
,
4

IF
ID

E
X

M
W
B

I8
:
su
b
$
r3
,
$
r3
,
4

IF
ID

E
X

M
W
B

I9
:
b
n
e
z
$
r3
,
b
u
c
le

IF
�

ID
E
X

M
W
B

I1
:
lw

$
f0
,
0($

r1
)

IF
ID

E
X

M
W
B

C
u
ad
ro

7:
S
econ

d
tim

in
g
d
iagram

of
ex
ercise

4.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
16 Computer Architecture

Cuadro 8: Latencies between instructions
Instruction producing the result Instruction using the result Latency

FP ALU operation Other FP ALU operation 6

FP ALU operation Store double 3

Load double FP ALU operation 2

Load double Store double 0

R1: Address of last element in �rst source array.

R2: Address of last element in second source array.

R3: Address of last element in target array.

R4: Precomputed with 8(R4) being �rst element in �rst source array.

All arrays have a size of 4, 000 elements.
Complete the following tasks:

1. Determine how many cycles are required to execute all loop iterations without modi�cations.

2. Determine how many cycles are required to execute all loop iterations if loop scheduling is
performed.

3. Determine how many cycles are required to execute all loop iterations if loop unrolling is perfor-
med for every two iterations.

4. Determine how many cycles are required to execute all loop iterations if loop unrolling is perfor-
med for every four iterations.

Solution 5

Section 1 The execution of an iteration of the loop would be:

L.D F0 , 0(R1)
L.D F2 , 0(R2)
<s t a l l > x 2
ADD.D F4 , F0 , F2
<s t a l l > x 3
S.D F4 , 0(R3)
DADDUI R1 , R1 , #−8

BNE R1 , R4 , BUCLE

In total, each iteration requires 11 cycles to have started all the instructions. This gives a total of
44,000 cycles.

Section 2 DADDUI instruction can be executed before

L.D F0 , 0(R1)
L.D F2 , 0(R2)
DADDUI R1 , R1 , #−8

<s t a l l > x 1
ADD.D F4 , F0 , F2
<s t a l l > x 3
S.D F4 , 0(R3)
BNE R1 , R4 , BUCLE

In total, each iteration now requires 10 cycles. This results in a total of 40,000 cycles

J. Daniel Garcia et al.

cbed ARCOS@uc3m
17 Computer Architecture

L.D F0 , 0(R1)
L.D F2 , 0(R2)
L.D F6 , −8(R1)
L.D F8 , −8(R2)
DADDUI R1 , R1 , #−16

ADD.D F4 , F0 , F2
ADD.D F10 , F6 , F8
<s t a l l > x 2
S.D F4 , 0(R3)
S.D F10 , −8(R3)
BNE R1 , R4 , BUCLE

A total of 12 cycles per iteration are required. This results in a total of 24,000 cycles

L.D F0 , 0(R1)
L.D F2 , 0(R2)
L.D F6 , −8(R1)
L.D F8 , −8(R2)
L.D F12 , −16(R1)
L.D F14 , −16(R2)
L.D F18 , −24(R1)
L.D F20 , −24(R2)
DADDUI R1 , R1 , #−32

ADD.D F4 , F0 , F2
ADD.D F10 , F6 , F8
ADD.D F16 , F10 , F12
ADD.D F22 , F18 , F20
S.D F4 , 0(R3)
S.D F10 , −8(R3)
S.D F16 , −16(R3)
S.D F22 , −24(R3)
BNE R1 , R4 , BUCLE

A total of 18 cycles per iteration are required. This results in a total of 18,000 cycles

Exercise 6 January 2014 exam.

A given processor is intended to run the following code fragment:

i 0 : lw $r4 , 0($r1)
i 1 : lw $r5 , 0($r2)
i 2 : add $r4 , $r4 , $r5
i 3 : sw $r4 , 0($r3)
i 4 : addi $r1 , $r1 , 4
i 5 : addi $r2 , $r2 , 4
i 6 : addi $r3 , $r3 , 4
i 7 : bne $r3 , $r0 , i 0

Assume that the processor has a segmented architecture of 5 steps (fetch, decode, execute, memory
and writeback) without forwarding. All operations are executed in one cycle per stage, except:

Load and store instructions, that require two cycles for the memory stage (an additional cycle).

Branch instructions require an additional cycle in the execution stage. Assume that these ins-
tructions do not have any branch prediction.

Answer the following questions:

1. Determine the RAW data hazards in the code that have impact in code execution.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
18 Computer Architecture

2. Show a timing diagram with the stages for each instruction in one iteration.

3. Determine how many cycles are required to execute one loop iteration if there is no branch
prediction.

4. Propose a loop unrolling assuming that the loop runs for 1000 iterations. Unroll with a factor of
four iterations.

5. Determine the obtained speedup obtained through unrolling performed in the previous section.

Solution 6

Section 1

$r4: i0 → i2

$r5: i1 → i2

$r4: i2 → i3

$r3: i6 → i7

Section 2 Table 9 shows the corresponding timing diagram.

I0: Requires two memory cycles.

I1: It can not start memory stage until I0 does not end memory. Requires two memory cycles.

I2: It can not start decoding until I1 does not do WB..

I3: No puede empezar captación hasta que se libera unidad por I2.

I4: It can not start pickup until unit is released by I2.

I5: It can not start execution stage until I4 releases drive execution.

I6: It can not start decode stage until I5 releases unit Of decoding.

I7: It can not start decoding until I6 does WB.

Section 3 If it is considered that the decoding step includes a comparator over the register bank the
following instruction to I7 can begin after the decoding stage of I7 (that is, in cycle 19) is completed.
Each iteration requires 18 clock cycles.

If the decoding step is not considered to include a comparator, the Comparison of two records
should be made with the general ALU and therefore it may not take the decision until the completion
stage of I7 (In cycle 21). In this case each iteration requires 20 clock cycles.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
19 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

I0
IF

ID
E
X

M
1

M
2

W
B

I1
IF

ID
E
X

�
M
1

M
2

W
B

I2
IF

�
�

�
�

ID
E
X

M
W
B

I3
IF

�
�

ID
E
X

M
1

M
2

W
B

I4
IF

ID
E
X

�
M

W
B

I5
IF

ID
�

E
X

M
W
B

I6
IF

�
ID

E
X

M
W
B

I7
IF

�
�

ID
X
1

X
2

M
W
B

C
u
ad
ro

9:
F
irst

tim
in
g
d
iagram

of
th
e
ex
ercise

6.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
20 Computer Architecture

Section 4 A possible solution is presented below. Note, however, that possible more aggressive
solutions that could lead to better res8ults.

speedups.

I0 : lw $r4 , 0($r1)
i 1 : lw $r5 , 0($r2)
i 2 : lw $r6 , 4($r1)
i 3 : lw $r7 , 4($r2)
i 4 : lw $r8 , 8($r1)
i 5 : lw $r9 , 8($r2)
i 6 : lw $r10 , 12($r1)
i 7 : lw $r11 , 12($r2)
i 8 : add $r4 , $r4 , $r5
i 9 : add $r6 , $r6 , $r7
i 10 : add $r8 , $r8 , $r9
i 11 : add $r10 , $r10 , $r11
i12 : sw $r4 , 0($r3)
i 13 : sw $r6 , 4($r3)
i 14 : sw $r8 , 8($r3)
i 15 : sw $r10 , 12($r3)
i 16 : addi $r3 , $r3 , 16
i 17 : addi $r2 , $r2 , 16
i 18 : addi $r1 , $r1 , 16
i 19 : bne $r3 , $r0 , i 0

Section 5 Table 10 shows the corresponding timing diagram.
Depending on the criterion chosen in Section 2, the number of cycles for Iteration will be 33 or 35

and the number of cycles per iteration will be
33
4 = 8,25 o 35

4 = 8,75
Therefore the speedup will be:

S =
18

8,25
= 2,18

So...

S =
20

8,75
= 2,28

Exercise 7 October 2013 exam.

A certain processor runs the following code segment:

i 0 : lw $r3 , 0($r0)
i 1 : lw $r1 , 0($r3)
i 2 : addi $r1 , $r1 , 1
i 3 : sub $r4 , $r3 , $r2
i 4 : sw $r1 , 0($r3)
i 5 : bnz $r4 , i 0

Assume that the processor has 5 stages pipelined architecture (fetch, decode, execute, memory and
write-back) without forwarding. All stages run in one cycle, except load and store operations which
require two additional cycles for memory access latency, and branching instructions which require one
additional execution cycle.

1. Identify RAW data hazards in the code.

2. Show a timing diagram with execution stages for each instruction in one iteration.

3. Determine how many cycles are required for executing one loop iteration when there is no branch
prediction.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
21 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

I0
IF

ID
E
X

M
1

M
2

W
B

I1
IF

ID
E
X

�
M
1

M
2

W
B

I2
IF

ID
�

E
X

�
M
1

M
2

W
B

I3
IF

�
ID

�
E
X

�
M
1

M
2

W
B

I4
IF

�
ID

�
E
X

�
M
1

M
2

W
B

I5
IF

�
ID

�
E
X

�
M
1

M
2

W
B

I6
IF

�
ID

�
E
X

�
M
1

M
2

W
B

I7
IF

�
ID

�
E
X

�
M
1

M
2

W
B

I8
IF

�
ID

�
E
X

�
M

W
B

I9
IF

�
ID

�
E
X

M
W
B

I10
IF

�
ID

M
W
B

I11
IF

ID
E
X

I12
F

D

I13
F

In
stru

c
tio

n
2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

I10
W
B

I11
M

W
B

I12
E
X

M
1

M
2

W
B

I13
ID

E
X

�
M
1

M
2

W
B

I14
IF

ID
�

E
X

�
M
1

M
2

W
B

I15
IF

�
ID

�
E
X

�
M
1

M
2

W
B

I16
IF

�
ID

�
E
X

�
M

W
B

I17
IF

�
ID

�
E
X

M
W
B

I18
IF

�
ID

E
X

M
W
B

I19
IF

ID
E
X

E
X

M
W
B

C
u
ad
ro

10:
S
econ

d
tim

in
g
d
iagram

of
th
e
ex
ercise

6.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
22 Computer Architecture

4. Determine how many cycles are required for executing one loop iteration when a branch predictor
(always predicting to taken) is used.

Solution 7

Section 1

$r3: i0 → i1

$r1: i1 → i2

$r1: i2 → i4

$r4: I3 → i5

Section 2 Table 11 shows the corresponding Timing diagram.

I0: Requires three memory cycles

I1: You can not start decoding until WB of $r3 is done. Requires 3 cycles of memory.

I2: It can not be fetched until the stage is released by I1. You can not start to decode until the
WB of $r1

I4: The decoding can not be started until I2 does WB of $r1

I5: Fetch can not start until I4 decoding starts. The memory cycle cannot be started until the
memory cycle of I4 does not end.

Section 3 In this case the I0 statement of the next iteration can not fetched until cycle 18, so an
iteration requires 18 cycles.

Section 4 In this case, the prediction is performed in the decoding step, which is when it is known
that it is a branch instruction, so I0 starts in cycle 16, and one iteration requires 16 cycles.

Exercise 8 October 2013 exam.

The following code is written in MIPS assembler. Assume that, before starting instructions execu-
tion, registers R3 and R5 contain, respectively, the memory addresses of the �rst and last element in
an array with 9 entries (initial value for R1=0x010 and R5=0x018).

Loop : LD R4 0(R1)
DIV R2 R2 R4
ADD R1 R1 #1
SUB R5 R5 #1
SD R4 0(R5)
SUB R6 R1 R5
BNEZ R6 Loop

1. Express all RAW and WAW data hazards in the code.

2. Provide a timing diagram assuming that the processor is pipelined with 5 stages (fetch, decode,
execution, memory y write back). An instruction per cycle is issued and the processor does not
use forwarding. Assume that there is pipeline freezing for branches and that there is one

additional cycle per memory access in reads (LD), which does not happen in writes.

3. Determine the number of cycles needed by the loop (all iterations) to run.

Solution 8

J. Daniel Garcia et al.

cbed ARCOS@uc3m
23 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

I0
IF

ID
E
X

M
1

M
2

M
3

W
B

I1
IF

�
�

�
�

ID
E
X

M
1

M
2

M
3

W
B

I2
IF

�
�

�
�

ID
E
X

M
W
B

I3
IF

ID
E
X

M
W
B

I4
IF

�
ID

E
X

M
1

M
2

M
3

W
B

I5
IF

ID
E
1

E
2

�
M

W
B

C
u
ad
ro

11:
T
im
in
g
d
iagram

for
ex
ercise

7.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
24 Computer Architecture

Section 1 When instructions I1 and I7 are executed, (being I1 the �rst one), the following hazards
are obtained:

R4: I1 → I2

R4: I1 → I5

R5: I4 → I5

R5: I4 → I6

R1: I3 → I6

R6: I6 → I7

Section 2 Table 12 shows the corresponding time diagram

Section 3 Total execution cycles of a loop iteration: 15

Given there are 5 iterations (values of r1 and r5 respectively: (0x010, 0x018), (0x011, 0x017),(
0x012, 0x016), (0x013, 0x015) y (0x014, 0x014)) and it is necessary to wait for the BNZ instruction
termination in the last iteration (3 extra cycles). We have:

15 cycles · 5 iterations+ 4 extra cycles = 79 cycles

Exercise 9 October 2013 exam.

Consider the following code fragment:

Loop : LD R4 , 0(R2)
LD R5 , 0(R3)
ADD R6 , R4 , R5
SD R6 , 0(R3)
BNZ R6 , Loop

1. Number of needed cycles to run one loop iteration in a non-pipelined processor. Memory access
instructions have a 3 cycles latency. Branch instruction has a 1 cycle latency.

2. Identify RAW data dependencies in the code.

3. Compute the number of needed cycles to run one iteration of the loop in a 5 stages pipelined
processor. The processor uses the forwarding technique and the branch prediction strategy is
pipeline freezing. Complete a timing diagram.

Solution 9

Section 1 Analysing separately the di�erent types of instructions:

3 memory instruction · (1 issue + 3 latency) = 12 cycles

1 ALU instruction · 1 issue = 1 cycle

1 branch instruction · (1 issue + 1 latency) = 2 cycles

Total = 15 cycles

J. Daniel Garcia et al.

cbed ARCOS@uc3m
25 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

L
D
R
4
0
(R
1
)

IF
ID

E
X

M
�

W
B

D
IV

R
2
R
2
R
4

IF
�

�
�

ID
E
X

M
W
B

A
D
D
R
1
R
1
#
1

IF
ID

E
X

M
W
B

S
U
B
R
5
R
5
#
1

IF
ID

E
X

M
W
B

S
D
R
4
0
(R
5
)

IF
�

�
ID

E
X

M
W
B

S
U
B
R
6
R
1
R
5

IF
ID

E
X

M
W
B

B
N
E
Z
R
6
L
o
o
p

IF
�

�
ID

E
X

M
W
B

L
D
R
4
0(R

1
)

�
IF

ID
E
X

M
W
B

C
u
ad
ro

12:
T
im
e
d
iagram

for
ex
ercise

8.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
26 Computer Architecture

Instrucción 1 2 3 4 5 6 7 8 9 10 11 12

LD R4,0(R2) IF ID EX M WB

LD R5,0(R3) IF ID EX M WB

ADD R6,R4,R5 IF ID � EX WB

SD R6,0(R3) IF � ID EX M WB

BNZ R6, Bucle IF ID EX M WB

(Next) IF ID EX M WB

Cuadro 13: Timing diagram for exercise 9.

Section 2 The following dependencies are identi�ed:

R4: LD → ADD.

R5: LD → ADD.

R6: ADD → SD.

Section 3 Table 13 shows the timing diagram:

Section 4

S =
15 · 2

(7 · 2) + 3
=

30

17
= 1,76

Exercise 10 June 2013 exam.

In the following code, each instruction has as associated cost one cycle, besides those included in
table 14. Besides, assume that the machine is able to issue one instruction per cycle, except waits due
to stalls and that the processor is pipelined with a single data path.

Due to structural hazards, stalls happen always independently that there are (or not) data depen-
dencies with the following instructions. Initially the following values are in registers R1=0, R2=24,
R3=16.

Loop1 : LD F2 , 0(R1)
ADDD F2 , F0 , F2

Loop2 : LD F4 , 0 (R3)
MULTD F4 , F0 , F4
DIVD F10 , F4 , F0
ADDD F12 , F10 , F4
ADDI R1 ,R1 ,#8
SUB R18 ,R2 ,R1
BNZ R18 , Loop2
SD F2 , 0 (R3)
ADDI R3 , R3 , #8
SUB R20 ,R2 ,R3
BNZ R20 , Loop1

1. Compute the number of needed cycles to run one iteration of the external loop and thirty of the
internal loop.

2. Unroll three iterations from the internal loop, do not unroll the external loop and perform again
the computation from the previous section.

3. Compare the timing results (number of cycles) from the �rst and second sections. Justify your
answers.

Solution 10

J. Daniel Garcia et al.

cbed ARCOS@uc3m
27 Computer Architecture

Cuadro 14: Additional costs per instruction
Instruction Additional cost

LD 3

SD 1

ADD 2

MULTD 4

DIVD 10

ADDI 0

SUB 0

BNZ 1

Section 1 1 Analysis:

Loop1 : LD F2 , 0(R1) 1+3
ADDD F2 , F0 , F2 1+2
Loop2 : LD F4 , 0 (R3) 1+3
MULTD F4 , F0 , F4 1+4
DIVD F10 , F4 , F0 1+10
ADDD F12 , F10 , F4 1+2
ADDI R1 ,R1 ,#8 1

SUB R18 ,R2 ,R1 1
BNZ R18 , Loop2 1+1

Inner−loop i t e r a t i o n 27

SD F2 , 0 (R3) 1+1
ADDI R3 ,R3 ,#8 1

SUB R20 ,R2 ,R3 1
BNZ R20 , Loop1 1+1

Outer−loop i t e r a t i o n : 13

Thee inner-loop iterations and one outer-loop iteration: = 13 + (27 · 3) = 94 cycles

Section 2 Analysis:

Loop1 : LD F2 , 0(R1) 1+3
ADDD F2 , F0 , F2 1+2
Loop2 : LD F4 , 0 (R3) 1+3
LD F6 , 0 (R3) 1+3
LD F8 , 0 (R3) 1+3
MULTD F4 , F0 , F4 1+4
MULTD F6 , F0 , F6 1+4
MULTD F8 , F0 , F8 1+4
DIVD F10 , F4 , F0 1+10
DIVD F12 , F6 , F0 1+10
DIVD F14 , F8 , F0 1+10
ADDD F16 , F10 , F4 1+2
ADDD F18 , F12 , F6 1+2
ADDD F20 , F14 , F8 1+2
ADDI R1 ,R1 ,#24 1

SUB R18 ,R2 ,R1 1
BNZ R18 , Loop2 1+1

Three inner−loop i t e r a t i o n s 73

SD F2 , 0 (R3) 1+1
ADDI R3 ,R3 ,#8 1

SUB R20 ,R2 ,R3 1
BNZ R20 , Loop1 1+1

Thee inner-loop iterations and one outer-loop iteration = 13 + (73 · 1) = 86 cycles

J. Daniel Garcia et al.

cbed ARCOS@uc3m
28 Computer Architecture

Section 3 It can be seen that there is no signi�cant reduction of cycles. That's because the inner
loop has very few iterations and that the weight of the control of the loop (increase indices and jump)
is relatively small compared to the rest of instructions.

Exercise 11 January 2013 exam.

Given the following code written in MIPS assembler, where the same memory address is read and
written several times and with values for R1 and R2 are R1=1 and R2=1000.

ADDI R3 , R3, 1
Loop : LD R4 , 0(16)

MULT R5 , R4 ,R4
ADD R5 , R3 ,R5
SD R5 , 0(16)
DADDI R3 , R4 , 1
DADDI R1 , R1 , 1
BNE R1 , R2 , Loop

The code runs in a MIPS-like pipelined processor with the following execution stages: fetch, decode,
execute, memory and write-back. The processor issues one instruction per cycle and has forwarding
capability. All the stages in the data path run in one cycle except the following cases: SD instruction
uses and additional cycle to read register R5 from the register �le, instruction LD uses an addi-
tional cycle to write value from memory into register R4 from the register �le and instructions
ADD and MULT use an additional cycle to complete its execution in the ALU. Assume that branch
prediction strategy in not taken.

1. Express only WAW data hazards in the code showing the instructions causing the hazard and
the associated register. In which situation could a WAW hazard originate and incorrect result for
the program?

2. Draw a time diagram assuming forwarding. Show the number of cycles that the program would
take to execute.

Solution 11

Section 1

WAW: I4 con I3 en R5.

WAW: I1 con I6 en R3.

You would get an incorrect result if I4 is executed before I3 on segmented processors where ins-
tructions can be reordered.

Section 2 Table 15 shows the corresponding timing diagram.
The cycles required to execute the loop can be divided:

Number of cycles before the loop: 1.

Number of cycles per iteration of the loop: 12.

Number of extra cycles of the last loop instruction: 3

The loop executes a total of 999 times. Therefore the number of cycles will be:

cycles = 1 + (12 · 999) + 3 = 11902

J. Daniel Garcia et al.

cbed ARCOS@uc3m
29 Computer Architecture

In
stru

c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

A
D
D
I
R
3
,R
3
,
1

IF
ID

E
X

M
W
B

L
D
R
4
,
0
(1
6
)

IF
ID

E
X

M
W
B

W
B

M
U
L
T
R
5
,R
4
,R
4

IF
ID

�
E
X

E
X

M
W
B

A
D
D
R
5
,R
3
,R
5

IF
�

ID
�

E
X

E
X

M
W
B

S
D
R
5
,
0
(1
6
)

IF
�

ID
ID

E
X

M
W
B

D
A
D
D
I
R
3
,R
4
,
1

IF
�

ID
E
X

M
W
B

D
A
D
D
I
R
1
,R
1
,
1

IF
ID

E
X

M
W
B

B
N
E
R
1
,R
2
,
L
o
o
p

IF
�

ID
E
X

M
W
B

(sig
)

IF
IF

ID
E
X

C
u
ad
ro

15:
T
im
in
g
D
iagram

of
E
x
ercise

11.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
30 Computer Architecture

Exercise 12 June 2012 exam.

Given the following code fragment:

Loop : LD R4 , 0 (R2)
LD R5 , 0(R3)
ADD R6 , R4 , R5
SD R6 , 0(R3)
ADD R6 , R6 , R4
ADDI R3 , R3 , #8
SUB R20 , R4 , R3
BNZ R20 , Loop

1. Enumerate the existing data dependencies in the code. For each one determine the datum causing
the dependency.

2. Provide a timing for this sequence for the 5 stages RISC pipeline without forwarding or bypassing
hardware, but assuming that a data read and a data write to the register �le can be performed
in the same cycle (assuming forwarding through the register �le). Assume that branches are
handled by �ushing the pipeline and that all memory accesses (including instruction fetch) take
two cycles. Justify your answer.

Solution 12

Section 1 The following data dependencies can be identi�ed:

R4: I1 → I3 (RAW).

R5: I2 → I3 (RAW).

R6: I4 → I3 (RAW).

R6: I5 → I4 (WAR).

R6: I5 → I3 (WAW).

R4: I5 → I1 (RAW).

R3: I6 → I4 (WAR).

R3: I7 → I6 (RAW).

R20: I8 → I7 (RAW).

If a read and a write of a data in the register �le can be done in the same clock cycle, then the
Decoding (ID) and write-back (WB) can be done in the same cycle.

Section 2 Table 16 shows the corresponding timing diagram.

Exercise 13 May 2012 exam.

Given the following code section:

J. Daniel Garcia et al.

cbed ARCOS@uc3m
31 Computer Architecture

In
s
tr
u
c
tio

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

L
D
R
4
,
0
(R
2
)

IF
�

ID
E
X

M
�

W
B

L
D
R
5
,
0
(R
3
)

IF
�

ID
E
X

M
�

W
B

A
D
D
R
6
,R
4
,R
5

IF
�

�
�

ID
E
X

M
B

S
D
R
6
,
0
(R
3
)

IF
�

�
ID

E
X

M
�

W
B

A
D
D
R
6
,R
6
,R
4

IF
�

ID
E
X

M
W
B

A
D
D
I
R
3
,R
3
,
#
8

IF
�

ID
E
X

M
W
B

S
U
B
R
2
0
,R
4
,R
3

IF
�

�
ID

E
X

M
W
B

B
N
Z
R
2
0
,
B
u
c
le

IF
�

�
ID

E
X

M
W
B

(s
ig
)

�
�

�
�

�

C
u
ad
ro

16:
E
x
ercise

tim
in
g
d
iagram

12.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
32 Computer Architecture

DADDUI R3 , R1 , #40 ; I1

LOOP: L.D F0 , 0(R1) ; I2

L.D F2 , 0(R2) ; I3

ADD.D F4 , F0 , F2 ; I4

S.D F4 , 0(R1) ; I5

DADDUI R1 , R1 , #8 ; I6

DADDUI R2 , R2 , #8 ; I7

BLE R1 , R3 , LOOP ; I8

And considering that it runs in a machine with additional latencies between instructions expressed
in Table 17.

Cuadro 17: Additional latencies
Instruction producing the result (pre-
vious)

Instruction using the result (subsequent) Latency

FP ALU operation FP ALU operation 5

FP ALU operation Load/store double 4

FP ALU operation Branch instruction 4

Load double FP ALU operation 2

Load double Load double 1

Store double FP ALU operation 2

The branch instruction has a latency of one cycle and no delay slot.

Besides, assume that the machine is able to issue one instruction per cycle, except waiting due to
stalls and that the processor has a pipeline with a single data path.

1. Identify all the data dependencies.

2. Determine the total number of cycles needed to run the complete section of code.

3. Modify the code to reduce stalls through the loop scheduling technique. Determine the obtained
speedup versus to the non-scheduled version.

4. Modify the code performing a loop unrolling with two loop iterations. Determine the obtained
speedup versus the non-scheduled version.

Solution 13

Section 1 The following dependencies are produced:

I4 → I2 (F0: RAW), I4 → I3 (F2: RAW)

I5 → I4 (F4: RAW)

I6 → I1 (R1: WAR), I6 → I2 (R1: WAR), I6 → I5 (R1: WAR)

I7 → I3 (R2: WAR)

I8 → I7 (R2: RAW), I8 → I1 (R3: RAW)

J. Daniel Garcia et al.

cbed ARCOS@uc3m
33 Computer Architecture

Section 2 The following are the stalls in the execution:

DADDUI R3 , R1 , #40 ; Solamente l a primera vez

BUCLE: L.D F0 , 0(R1)
L.D F2 , 0(R2)
S t a l l
S t a l l
ADD.D F4 , F0 , F2
S t a l l
S t a l l
S t a l l
S t a l l
S.D F4 , 0(R1)
DADDUI R1 , R1 , #8

DADDUI R2 , R2 , #8

BLE R2 , R3 , BUCLE

A cycle is required for the initiation code. Each iteration needs 13 cycles. As the loop is executed
5 times, we have a total of:

1 + 5 · 13 = 66

Because there is no delay slot it is not necessary to add a stall cycle after the branch instruction
(BLE).

Section 3 Next, the modi�ed code:

DADDUI R3 , R1 , #40 ; Only the f i r s t time

BUCLE: L.D F0 , 0(R1)
L.D F2 , 0(R2)
DADDUI R1 , R1 , #8

DADDUI R2 , R2 , #8

ADD.D F4 , F0 , F2
S t a l l
S t a l l
S t a l l
S t a l l
S.D F4 , −8(R1)
BLE R1 , R3 , BUCLE

A total time of 1 + 5 · 11 = 56. Again, we need a cycle for the initiation code. Each iteration needs
13 cycles. Because there is no delay slot, it is not necessary to add a stall after the jump instruction
(BLE).

Speedup = 66/56 = 1,17

Section 4 Next, the modi�ed code:

DADDUI R3 , R1 , #32 ; Only the f i r s t time

BUCLE: L.D F0 , 0(R1)
L.D F2 , 0(R2)
S t a l l
S t a l l
ADD.D F4 , F0 , F2
S t a l l
S t a l l
S t a l l
S t a l l
S.D F4 , 0(R1)
L.D F6 , 8(R1)
L.D F8 , 8(R2)
S t a l l
S t a l l
ADD.D F10 , F6 , F8

J. Daniel Garcia et al.

cbed ARCOS@uc3m
34 Computer Architecture

S t a l l
S t a l l
S t a l l
S t a l l
S.D F10 , 8(R1)
DADDUI R1 , R1 , #16

DADDUI R2 , R2 , #16

BLE R2 , R3 , BUCLE
L.D F0 , 0(R1)
L.D F2 , 0(R2)
S t a l l
S t a l l
ADD.D F4 , F0 , F2
S t a l l
S t a l l
S t a l l
S t a l l
S.D F4 , 0(R1)

In total, we now have 2 iterations inside the loop. In addition, the �fth iteration of the original
loop is now done at the end. The time required is:

1 + 2 · 23 + 10 = 57

If you also re-schedule the instruction, you can have:

DADDUI R3 , R1 , #32 ; Only the f i r s t time

BUCLE: L.D F0 , 0(R1)
L.D F2 , 0(R2)
L.D F6 , 8(R1)
L.D F8 , 8(R2)
ADD.D F4 , F0 , F2
S t a l l
ADD.D F10 , F6 , F8
DADDUI R1 , R1 , #16

DADDUI R2 , R2 , #16

S.D F4 , −16(R1)
S t a l l
S.D F10 , −8(R1)
BLE R2 , R3 , BUCLE
L.D F0 , 0(R1)
L.D F2 , 0(R2)
S t a l l
S t a l l
ADD.D F4 , F0 , F2
S t a l l
S t a l l
S t a l l
S t a l l
S.D F4 , 0(R1)

The new time is:

1 + 2 · 13 + 10 = 37ciclos

J. Daniel Garcia et al.

cbed ARCOS@uc3m
35 Computer Architecture

	1 Exam exercises

