
Solutions to exercises on parallelism and concurrency

J. Daniel García Sánchez (coordinator)
David Expósito Singh
Javier García Blas

Computer Architecture
ARCOS Group

Computer Science and Engineering Department
University Carlos III of Madrid

1. Exam exercises related to parallelism

Exercise 1 (June 2015)

Given the following program parallelized with OpenMP:

double calculate_pi(double step) {
int i ;
double x, sum = 0.0;
#pragma omp parallel for reduction(+: sum) private(x)
for (i=0;i<1000000;++i) {
x = (i−0.5) ∗ step;
sum += 2.0 / (1.0 + x∗x);

}
return step ∗ sum;

}

Write an equivalent version of the program without the reduction annotation.

Solution 1

double calculate_pi(double step) {
int i ;
double x, sum=0.0;
int nth = omp_get_num_threads();
double ∗ sumv = malloc(sizeof(double) ∗ nth);
for (i=0; i<nth; ++i) sumv[i] = 0.0;

#pragma omp parallel for private(x)
for (i=0;i<1000000;++i) {
int id = omp_get_thred_num();
x = (i−0.5) ∗ step;
sumv[id] += 2.0 / (1.0 + x∗x);

}
for (i=0; i<nth; ++i) sum+=sumv[i];
return step ∗ sum;

}

Exercise 2 (January 2015)

Given the following code parallelized with OpenMP and assuming that we count with 4 threads

(export OMP_NUM_THREADS=4) and iter = 16:

J. Daniel Garcia et al.
cbed ARCOS@uc3m

1 Computer Architecture

#pragma omp parallel for private(j)
for (i = 0; i < iter ; ++i) {
for (j = iter − (i+1); j < iter ; ++j) {
//This function has a computing time of 2s
compute_iteration(i, j , ...) ;

}
}

State:

1. Fill out the following table with a possible allocation of iterations of the loop with (index i)
with static scheduling, schedule (static). Indicate in the table which thread performs each

iteration of the loop (each value other than i) and how long that iteration takes. Also calculate

the approximate execution time per thread and the total execution time.

iter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread (ID)

Time (s)

2. Fill in the following table with a possible allocation of iterations by running the loop (with index

i) with dynamic scheduling and chunk 2, schedule (dynamic, 2). Indicate in the table which

thread performs each iteration of the loop (each value other than i) and how long that iteration

takes. Also indicate the approximate execution time per thread and the total execution time.

iter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread (ID)

Time (s)

3. Justify which of the previous schedules would be best for a generic case (variable number of

iterations and threads).

Solution 2

Point 1 In case of a static scheduling:
Iteration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Time 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time per thread:

Thread 0: 20 s

Thread 1: 52 s

Thread 2: 84 s

Thread 3: 116 s

Total time: 116s

J. Daniel Garcia et al.
cbed ARCOS@uc3m

2 Computer Architecture

Point 2 In case of a dynamic scheduling:
Iteration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

Time 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time per thread:

Thread 0: 44s

Thread 1: 60s

Thread 2: 76s

Thread 3: 92s

Total time: 92s

Point 3 Regardless of the number of iterations and threads, since the workload per iteration is not

uniform, it will be better adapted the dynamic scheduling than static scheduling. It could be accepted
in response that the best scheduler is guided.

2. Exam exercises related to concurrency

Exercise 3 (June 2015)

Given the following de�nition of a lock-free stack:

template<typename T>
class stack {
private:
struct node {
std :: shared_ptr<T> data;
node∗ next;
node(T const& data_):data(new T(data_)){}

};
std :: atomic<node∗> head;

public:
void push(T const& data);
std :: shared_ptr<T> pop()

};

1. Provide a lock-free implementation for both push and pop functions.

NOTE: Ignore the problem related to memory leaks.

2. Brie�y explain how you could avoid the memory leak problem associated with your solution.

Solution 3

J. Daniel Garcia et al.
cbed ARCOS@uc3m

3 Computer Architecture

Point 1 A possible implementation that ignores memory leaks might be:

template <typename T>
void push(T const& data) {

node∗ const new_node=new node{data};
new_node−>next=head.load();
while(!head.compare_exchange_weak(new_node−>next,new_node));

}

template <typename T>
std :: shared_ptr<T> pop() {

node∗ old_head=head.load();
while(old_head && !head.compare_exchange_weak(old_head,old_head−>next));
return old_head ? old_head−>data : std::shared_ptr<T>();

}

Point 2 You could add an atom counter inicializated with the number of threads that are performing

a pop and allow deletion when there are no threads that perform pop.

Exercise 4 (January 2015)

Let the following code be programmed with atomics. At point A, head contains the value 8 and an

attempt is made to insert a value 9. If another thread tries to insert a value 10 concurrently, indicate

which data will be printed on the screen if part B is executed (line 16). Which data if you get to

execute the part C (line 25)?

struct node {
std :: shared_ptr<T> data;
node∗ next;
node(T const& data_):data(new T(data_)), next(nullptr) {}

};

std :: atomic<node∗> head;

void push(T const& data) {
node∗ const new_node=new node(data);
new_node−>next=head.load();

//A
std :: cout << ∗(head.load()−>data) << " "; // 8
std :: cout << ∗(new_node−>next−>data) << " "; // 8
std :: cout << ∗(new_node−>data) << std::endl; // 9

if (head.compare_exchange_strong(new_node−>next,new_node)) {
//B
std :: cout << ∗(head.load()−>data) << " ";
std :: cout << ∗(new_node−>next−>data) << " ";
std :: cout << ∗(new_node−>data) << std::endl;

}
else {
//C
std :: cout << ∗(head.load()−>data) << " ";
std :: cout << ∗(new_node−>next−>data) << " ";
std :: cout << ∗(new_node−>data) << std::endl;

}
}

Solution 4

In case B, the message in the screen is:

9 8 9

In case C, the message in the screen is:

J. Daniel Garcia et al.
cbed ARCOS@uc3m

4 Computer Architecture

10 10 9

No other solution is possible, since compare_exchange_strong does not support spurious faults.

Exercise 5 (January 2014)

Given the following function:

std ::mutex m; // global mutex
int counter; // global counter
void f() {
m.lock();
++counter;
m.unlock();

}

We want to replace the global variable m and avoid possible system calls, and at the same time, it

is desired to ensure mutual exclusion in the counter variable increment.

State:

1. Propose and implement a solution that o�ers sequential consistency and does not involve system

calls.

2. Propose and implement a solution that o�ers release-acquire consistency.

3. Propose and implement a solution that o�ers release-acquire consistency and it is valid in case

of the counter variable becomes a double-precision �oat-point number.

Solution 5

Point 1 A possible solution applying sequential consistency would be:

std :: atomic<int> counter; // global counter
void f() {
++counter;

}

Point 2 A possible solution applying release-acquire consistency would be:

std :: atomic<int> counter; // global counter
void f() {
counter.fetch_add(1, std::memory_order_acq_rel);

}

Point 3 In the case of �oating-point variables, atomic types can not be used directly. In this case, a

similar e�ect can be achieved by using a spin-lock approach.

std :: atomic_�ag spin = ATOMIC_FLAG_INIT;
double counter; // global counter
void f() {
while (spin.test_and_set(std::memory_order_acquire)) {}
counter += 1.0;
spin. clear (std ::memory_order_release);

}

J. Daniel Garcia et al.
cbed ARCOS@uc3m

5 Computer Architecture

	1 Exam exercises related to parallelism
	2 Exam exercises related to concurrency

