
Parallel programming in OpenMP Lab

J. Daniel García Sánchez (coordinator)
David Expósito Singh
Javier García Blas

Computer Architecture
ARCOS Group

Computer Science and Engineering Department
University Carlos III of Madrid

1. Objective

The objective of this lab is guide the student to parallel programming in shared memory architec-

tures. The lab is focused on making use of the OpenMP programming model.

2. Lab description

Two implementations of the N-body problem are provided. Both implementations are written in

C++11. In both implementations, the strategy can be selected to be either AOS (Array of structures)

or SOA (Structure of Arrays).

2.1. The N-body problem

The problem to be solved consists in the simulation over time of N bodies moving in a 2D space

and considering gravitational attraction. This computation is performed over time in time increments

∆t.
The program performs a simulation in a bi-dimensional space. The space is considered to be a

closed box. Consequently, when an object impacts a box border, a rebound happens, and the movement

direction changes.

2.2. Support code

The provided code consists of a set of class and library functions and two main programs.

Main programs are in directory app. The rest of source �les are in directory include and src.

Program nbody�le reads from a �le the simulation setup and the initial state of objects to be

simulated. The �le contains a header line with simulation parameters followed by a set of lines (one

per object), containing initial state for each object. It takes the following command line parameters:

mode: Execution mode. It may be either aos (array of structures) or soa (structure of arrays).

Input �le name. If not speci�ed, �le in.txt will be used.

Output �le name. If not speci�ed, �le out.txt will be used.

J. Daniel Garcia et al.

cbed ARCOS@uc3m

1 Computer Architecture



Program nbodyrnd generates a set of objects in a pseudo-random way using two parameters: the

number of objects and the number of simulation iterations. This program generates a given number

of objects uniformly distributed in space and with a mass that follows a normal distribution. Program

takes the following parameters:

mode : Execution mode. It may be either aos (array of structures) or soa (structure of arrays).

Number of bodies to be simulated. If not speci�ed, default value is 50.

Number of iterations for simulation. If not speci�ed, default value is 100.

Output �le name. If not speci�ed, �le out.txt will be used.

3. Tasks

3.1. Performance initial evaluation

This task consists in an initial performance evaluation of the provided programs. You may use

program nbody�le to experiment with code and understand how it works. After that, run program

nbodyrnd with di�erent input parameters.

Important Note: Please, make sure that you compile all the examples with optimizations enabled

(compiler option -O3, or CMake option CMAKE_BUILD_TYPE=Release).

To evaluate performance, you must measure application execution time. You must represent grap-

hically results. Keep in mind the following guidelines:

Perform each experiment a number of times and take the average value. A minimum of 10

executions is recommended.

Study results for object population sizes from 250 objects to 1, 000 objects in 250 increments

(i.e.: 250, 500, 750, 1, 000).

Study results for di�erent number of iterations from 50 to 200 in increments of 50.

Remind that the goal is to compare aos and soa strategies.

Plot the obtained total execution time for each case. Represent in a di�erent �gure the average

iteration time.

Include in the lab report the conclusions that you may infer from the results. Please, do not limit

yourself to simply describing data. You must also look for a convincing explanation of the results.

3.2. Parallelization

This task includes the development of the corresponding parallel versions for the provided pro-

grams using OpenMP. You must provide in your lab report a detailed explanation of the modi�cations

performed.

The lab report must also include the design decisions you have taken to achieve parallelization. For

each decision, you must include which other alternatives could be considered and justify reasons for

the selected choice.

J. Daniel Garcia et al.

cbed ARCOS@uc3m

2 Computer Architecture



3.3. Parallel version evaluation

Repeat evaluations from �rst section. Consider di�erent number of threads, from 1 to 16 threads

(1, 2, 4, 8, and 16).

Important Note: Please, make sure that you compile all the examples wit optimizations enabled

with (compiler option -O3, or CMake option CMAKE_BUILD_TYPE=Release).

Besides from �gures in the �rst section, plot the obtained speedup.

Include in the lab report the conclusions that you may infer from the results. Please, do not limit

yourself to simply describing data. You must also look for a convincing explanation of results.

3.4. Impact of scheduling

Perform a study, for the cases of 4 and 16 threads, on the impact that di�erent scheduling models

have on performance (static, dynamic, and guided) provided by OpenMP.

J. Daniel Garcia et al.

cbed ARCOS@uc3m

3 Computer Architecture


	1 Objective
	2 Lab description
	2.1 The N-body problem
	2.2 Support code

	3 Tasks
	3.1 Performance initial evaluation
	3.2 Parallelization
	3.3 Parallel version evaluation
	3.4 Impact of scheduling


