Department of Computer Science and

Engineering
Bachelor in Computer Science and —
Universidad Engintering ARCOS | ﬂ
Carlos IIT de Madrid G 47 Gl
Computer Architecture "" Vi "' =
Exam

ATTENTION:
e Time limit is 150 minutes.

NAME:

FAMILY NAME:

NIA:

Exercise 1 [3 points]:

A computer has an L1 data cache which is 2 ways set-associative and with a size of 32KB and an L1 instructions cache
with the same characteristics. It also has an L2 unified cache which is 4-ways set-associative with a size of 256 KB. In
both cases the line size is 64 bytes. It is assumed that hit in L1 cache requires 3 cycles and a hit in L2 cache requires 9
additional cycles and a penalty for bringing a block from main memory to L2 cache of 60 cycles. All caches have a
write-back policy.

On this machine we have the following code fragment:

struct body {
double x, y, z;
double vx, vy, vz;
double ax, ay, az;
double m;
2
void f(std::vector<body> & v, double dt} {
const size_t sz = v.size();
for (int i=0; i< sz; ++i) {
v[il.vx += v[i].ax * dt;
v[il.vy +=v[il.ay * dt;
v[i].vz += v[i].az * dt;
v[i].x += v[i].vx * dt;
v[il.y += v[i].vy * dt;
v[i].z += v[i]l.vz * dt;
}
}
1.1 [0.5 points]: Determine which should be the average access time for data assuming the following miss
rates:

e Ll1data:3%
o 12:1%

1.2 [1.5 points]: Determine the number of misses in data access during the execution of the loop in
function f() for cache L1 (initially empty) if vector size is 64 elements. Assume that variables | and sz are
allocated to registers and do not generate data accesses. The data block from vector v is assumed to be
aligned at 64 bytes limit.

Department of Computer Science and

Engineering
Bachelor in Computer Science and =
8 Universidad Engintering ARCOS [|- ‘
y Carlos III de Madrid a4 471
Computer Architecture ""’j"‘j ' el .
Exam

1.3 [1 point]: Propose a modification in code that uses parallel arrays (i.e., eliminating the array merge and
using an independent array for each field in the original structure) instead of array merge and determine
which would be the new miss rate. Assume that all data blocks from arrays are stored consecutive in
memory.

SOLUTION:

1.1:

Ta =th(L1) + m(L1) * (th(L2) + m(L2) * tp(L2))
Ta=3+0.03*(9+0.01*60)=3+0.039.6=3,228
1.2:

Each element in the array has 10 values of 8 bytes, using in total 80 bytes. Each cache line uses 64 bytes.
This makes that elements in the array do not perfectly match in cache lines. The least common multiple fo
80 and 64 is 320. Thus, a match happens for every 320 bytes, which is equivalent to 5 cache lines or 4 array
locations.

L1 cache has 32 KB. The size of a way is 16 KB. As the size of a line is 64 B, the number of lines per way is
214/ 26 =28,

As very element in the vector needs 80 bytes, the number of elements that a way can hold is 2'* /(25*5)
=2°/5 > 102. Consequently, the 64 elements in the vector can fit in a single way of L1 cache.

To analyze the number of misses and hits, we will analyze accesses to the first 4 locations in the array, as
those results can be extrapolated to the rest. Its memory layout is:

LO: v[0].x, V[OL.y, v[0].z, v[0].vx, v[O].vy, v[0].vz, v[0].ax, v[0].ay
L1: v[0].az, v[0].m, V[1].x, v[1].y, V[1]., v[1].vx, v[1].vy, v[1].vz
L2: v[1].ax, v[1].ay, v[1].az, v[1].m, v[2]., V[2].y, V[2].2, v[2].vx
L3: v[2].vy, V[2].vz, v[2].ax, v[2].ay, v[2].az, v[2].m, V[3].x, V[3].y
L4: v[3].z, v[3].vx, V[3].vy, V[3].vz, v[3].ax, v[3].ay, v[3].az, v[3].m

In each iteration there is a total of 18 memory accesses (two reads and one write per sentence, as operator
+=is used). In four iterations, there is a total of 4*18=72 memory accesses. From them, 4 are cache misses.
In total, there are 5 * 64 / 4 = 80 misses.

Thus, the cache miss rate is 5/72 = 0,06944 -> 6,94%

Universidad

1.3

Using parallel arrays we have:

Carlos IIT de Madrid

Department of Computer Science and

Engineering
Bachelor mE(;ogri\:]r::?r:;cnence and ARCOS E’(
Computer Architecture "*Z»—*j_.‘fj
Exam

void f(std::vector<double> & x, std::vector<double> & vy, std::vector<double> & z,
std::vector<double> & vx, std::vector<double> & vy, std::vector<double> & vz,

std::vector<double> & ax, std::vector<double> & vy, std::vector<double> & vz,

double dt) {

const size_t sz =x.size();

for (int i=0; i<sz; ++i) {
vx[i] += ax[i] * dt;
vyli] += ay[i] * dt;
vz[i] += az[i] * dt;
x[i] += vx[i] * dt;
y[il += vyl[i] * dt;
z[i] += vz[i] * dt;

}

}

Each of the nine arrays (array m is not used) need 8 * 64 bytes = 2**2° bytes = 2° bytes, equivalent to 8

consecutive cache lines. The total number of lines used by all arrays is 8*9 = 72, which is much lower thatn

the 256 cache lines per way in L1

In this case, it is necessary to analyze what happens in 8 iterations, as 8 elements fit in one line.

Iteration 0: 9 misses (one per array) and 9 hits.

Iterations 1 to 7: 18 hits per iteration.

In total, for 8 iterations, we have 9 misses and 135 hits (9+18*7), and the miss rate is 9/144 = 0.0625 ->

6,25%

Department of Computer Science and

Universidad
Carlos IIT de Madrid

Engineering

Engineering
Computer Architecture

Exam

Bachelor in Computer Science and

Exercise 2 [2.5 points]: A processor with three cores and symmetric shared memory architecture uses a

bus with snooping protocol. Each core has a single level of cache memory which is private for that core and

whose coherence is kept by using a MSI protocol. Cache memories use direct mapping and each cache line

stores two words.

(read/write)

CPU read

Shared

Place read miss on bus

CPU write N

Place write
miss on bus

(read only)

CPU read hit

CPU
read
miss
Place read

miss on bus

Write miss
for this block

Exclusive

Cache state transitions
based on requests from CPU

CPU write hit
CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

Write-back block;

Exclusive
(read/write)

abort memory
access

for this block

Write miss for this block

Invalidate for
this block

Read miss

Shared
(read only)

CPU
read
miss

Cache state transitions based
on requests from the bus

The following scenarios show different execution situations of different threads in each core. Assume that:

e Each scenario is independent and for each one all cache memories are initially empty.

e Vectors a and b have two entries, are memory aligned storing a single block each one.

e Due to mapping policy, vectors a and b are stored in the same cache line.

e You are asked to specify for each scenario the contents of cache memories from each core across
time following the format in the provided table (make one for each scenario). Besides, you must
justify your answers.

Corel Core 2 Core 3
Time State Content State Content State Content Bus Traffic
(aorb) (aorb) (aorb)

R Universidad
i & Carlos Il de Madrid

Department of Computer Science and

Bachelor in Computer Science and

Engineering

Engineering

Computer Architecture

Exam

ARCOS “-Q

Scenario 1:
Time Thread 1 (running | Thread 2 (running Thread 3 (running
in core 1) in core 2) in core 3)
Read a[0]
Read a[0]
Write a[0]
Scenario 2:
Time Thread 1 (running | Thread 2 (running Thread 3 (running
in core 1) in core 2) in core 3)
Write a[0]
Write a[0]
Write a[0]

Read a[0]

e Scenario 3:

v-,,{; Universidad
. & Carlos Il de Madrid

Department of Computer Science and
Engineering
Bachelor in Computer Science and

Engineering
Computer Architecture

Exam

Time Thread 1 (running | Thread 2 (running | Thread 3 (running
in core 1) in core 2) in core 3)
Read a[0]
Read a[0]
Write a[1]
Read a[0]

e Scenario 4:

Time Thread 1 (running | Thread 2 (running | Thread 3 (running
in core 1) in core 2) in core 3)
Write a[0]
Read b[0]
Write a[0]
Write b[0]
Write a[0]
Solution:
Scenario 1
Corel Core 2 Core 3
rme State Content State Content State Content Bus traffic
(aorb) (aorb) (a or b)
S a Read miss
Send a
Read miss
: i i : Send a
! a I a E a Write miss
Send a

Department of Computer Science and

Engineering .
Bachelor in Computer Science and ==
® Universidad Engintering ARCOS [- ‘
Carlos IIT de Madrid G 4 471
Computer Architecture "’j""j ' 7l |
Exam
Scenario 2
Corel Core 2 Core 3
Time Bus traffic
Content Content Content
State State State
(aorb) (aorb) (aorb)
E a Write miss
Send a
I a E 3 Write miss
Write back a
| a E a
| a E a

Department of Computer Science and

Engineering
Bachelor in Computer Science and ==
8 Universidad Engintering ARCOS [|- ‘
Carlos III de Madrid iy L
e Computer Architecture ""’j"‘j_"‘:j .
Exam
Scenario 3
Corel Core 2 Core 3
Time State Content State Content State Content Bus traffic
(a orb) (aorb) (a orb)
. Read miss
Send a
a S 3 Read miss
Send a
E a a | 3 Write miss
Send a
Read miss
S S
@ . a Write-back a
Scenario 4
Corel Core 2 Core 3
Time State Content State Content State Content Bus traffic
(a orb) (a orb) (aorb)
0 . Werite miss a
Send a
Read miss b
1 b Write-back a
Send b
Werite miss a
2 b E a
Send a
3 b E a Invalidate
Write back b
4 a | a Write miss a
Write back a

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Department of Computer Science and

Engineering
Bachelor in Computer Science and —
Universidad Engintering ARCOS |
Carlos IIT de Madrid G 4 P
Computer Architecture "’j j‘.“j
Exam

Exercise 3 [1 point]: Given the following code, answer the questions below:
void exec(int a){
/*
* This code needs “a” seconds of CPU to be executed
*/
}

int main(){

#pragma omp parallel for
for(inti=0; i< 100; i++){

exec(i);
}
return O;
}

3.1 [0.5 points]: What is done in line 9? Consider that no environment variable related to OPenMP has be set in
the session where the program is running.
3.2 [0.5 points]: Which is the best OpenMP scheduler for directive in line 9 using a chunk size of 10? Justify your
answer comparing the behavior of all possible schedulers.

SOLUCION

a) Directive at line 9 performs two operations:

1.- Generates as many threads as cores (real or virtual} are available in the machine executing. A join is
performed upon loop termination.

2.- Splits the loop among the created threads. As no scheduler is specified, by default the static scheduler is
selected and iterations are equitatively split among threads.

b) As an exmple a 4 threads execution:

As the workload increases as the iteration index increases, the worst scheduler will be the “static” without chunk
sizes as it will give 25 iterations to each thread and the last 25 iterations require much more time that the first
25. The estimated time for 4 threads for the last 25 iterations is: 99 + 98 + 97 + 96 ... + 76 + 75 = 2175.

Dynamic and static schedulers with a chunk size of 10 will behave similarly. Dynamic will give 10 iteration to each
thread, and when they finish, will give them another 10. Static will give iterations also in chunks of 10 with a
similar order to dynamic. A possible sharing will be:

Department of Computer Science and

Engineering
Bachelor in Computer Science and =
Universidad Engintering ARCOS EL“Q
Carlos IIT de Madrid o 4 A
Computer Architecture ""jﬁjﬁ
Exam
Thread 0 Oto9 36
40 to 49 435
80 to 89 835 1306 Seconds
Thread 1 10to 19 135
50to 59 535
90 to 99 935 1605 Seconds
Thread 2 20to 29 235
60 to 69 635
870 seconds
Thread 3 30to 39 335
70t0 79 735

1070 Seconds

Consequently the total time would go down to 1605 seconds.

The last case would be the “guided” scheduler. In this case, the number of iterations is adjusted as the program
advances to adapt to the remaining workload. Thus, at the end of execution, when sharing has a higher impact,
the grain will be finer getting a better sharing. This will approximate the best possible scheduling.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Department of Computer Science and

Engineering
Bachelor in Computer Science and e
Universidad Engintering ARCOS | —Q
Carlos IIT de Madrid S —
Computer Architecture "' —'

Exam

Exercise 4 [1.5 points]: Given the following code, answer the questions below:

#include <iostream>
#include <iomanip>
#include <thread>
#include <vector>

double sum;
double step;
int n_threads;

void calculate_steps(int thread_id, long nsteps) {

}

for (int i=thread_id; i<nsteps; i=i+n_threads) {
double x = (i+0.5) * step;
sum += 4.0 / (1.0 + x * Xx);

}

int main(){

using namespace std;

// Init global variables
n_threads = 4;

long nsteps = 100000000;

step = 1.0 / double(nsteps);

sum = 0.0;
std::vector<std::thread> threads;

// Create threads

for(int i = 0; i < n_threads; i++){
threads.push_back(std::thread(calculate_steps,i,nsteps));

}

for (int i = 0; i < n_threads; ++i) {
threads[i].join();

}

// Calculate reduction

double pi = step * sum;

cout << "PI= " << setprecision(1l0Q) << pi << endl;

return 0;

4.1 [0.25 points]: Specify the lines of code composing a critical section. Justify your answer.
4.2 [0.25 points]: Propose a lock based solution to the critical section. Justify your answer.

4.3 [0.5 points]: Propose a lock-free solution to the critical section. Justify your answer.

4.4 [0.5 points]: If the program is run in a 2-core machine. Which from the following solutions should have a
better performances using two threads (n_threads = 2). And using 32 threads (n_threads=32). Justify both
answers.

Department of Computer Science and

Engineering
Bachelor mE(;ogri\:]Zl::?;gSmence and ARCOS —1_9
Garl Gof’ G
Computer Architecture "' —'
Exam

SOLUCION

4.1.- The only conflictive part in the code is in oine 12, when all threads try to modify concurrently the shared
variable sum.

4.2

#include <iostream>
#include <iomanip>
#include <thread>
#include <vector>
#include <mutex>

double sum;
double step;

int n_threads;
std::mutex mtx;

void calculate_steps(int thread_id, long nsteps) {
for (int i=thread_id; i<nsteps; i=i+n_threads) {
double x = (i+0.5) * step;
std::unique_lock<std::mutex> I{mtx};
sum +=4.0/ (1.0 + x * x);
}
}

int main(}{
using namespace std;

// Init global variables

n_threads = 16;

long nsteps = 10000000;

step = 1.0 / double(nsteps);

sum =0.0;
std::vector<std::thread> threads;

// Create threads
for(inti=0; i< n_threads; i++){
threads.push_back(std::thread(calculate_steps,i,nsteps));
}
for (inti=0; i< n_threads; ++i) {
threadsli].join();
}

4.3.-

Department of Computer Science and

Engineering |
Bachelor in Computer Science and —
8 Universidad Engintering ARCOS | ‘
y Carlos III de Madrid G 4 P
Computer Architecture "’j j‘.“j
Exam

// Calculate reduction
double pi = step * sum;
cout << "Pl=" << setprecision(10) << pi << endl;

return 0;

}

#include <iostream>
#include <iomanip>
#include <thread>
#include <vector>
#include <atomic>

double sum;
double step;

int n_threads;
std::atomic_flag f;

void calculate_steps(int thread_id, long nsteps) {
for (int i=thread_id; i<nsteps; i=i+n_threads) {
double x = (i+0.5) * step;
while(f.test_and_set());
sum +=4.0/ (1.0 + x * x);
f.clear();
}
}

int main(){
using namespace std;

/I Init global variables

n_threads = 4;

long nsteps = 100000000;

step = 1.0 / double(nsteps);

sum = 0.0;
std::vector<std::thread> threads;

/l Create threads
for(inti = 0; i < n_threads; i++){
threads.push_back(std::thread(calculate_steps,i,nsteps));

}

for (inti = 0; i < n_threads; ++i) {

Department of Computer Science and

Engineering
Bachelor mE(;ogri\:]Zl;:::;cnence and ARCOS [j ‘
Computer Architecture P - |
Exam

threads]i].join();

/I Calculate reduction
double pi = step * sum;
cout << "Pl=" << setprecision(10) << pi << endl;

return O;

4.4.- A valid answer is that atomics perform better if there are enough available resources to perform busy waiting
(two threads and two cores), but mutes will behave better when there are more threads performing waiting.

A mutex implies invocation of operating system calls while threads make use of hardware support.

