uc3m Universidad Carlos III de Madrid

CÁLCULO DIFERENCIAL APLICADO

TEMA 5: Series de Fourier y separación de variables: Ecuación del calor. EJERCICIOS Y PROBLEMAS

Autores:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Cuestión 1 Consideremos la ecuación del calor

$$k \frac{\partial^2 u}{\partial x^2}(x,t) = \frac{\partial u}{\partial t}(x,t), \quad t > 0, \quad x \in [0,L],$$

sometida a las condiciones de frontera siguientes:

(CC)
$$u(0,t) = 0$$
, $u(L,t) = 0$, $\forall t > 0$,
(CI) $u(x,0) = f(x)$, $\forall x \in [0,L]$.

La solución a este problema de valores en la frontera se expresa:

$$u(x,t) = \sum_{n=1}^{\infty} A_n \exp\left(-k\frac{n^2\pi^2}{L^2}t\right) \sin\left(\frac{n\pi}{L}x\right).$$

donde

$$A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx, \quad \text{con } n \in \mathbb{N} = \{1, 2, 3, \ldots\}$$

Se pide:

i) Deducir, con todo detalle, las expresiones de A_n , $n \in \mathbb{N}$, sabiendo que

$$\int_0^L \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) dx = \begin{cases} 0, & m \neq n \\ L/2, & m = n \end{cases}.$$

ii) Tomando $L = \pi$, hallar la solución u(x, t), para

$$f(x) = 3\sin(2x) + \frac{5}{3}\sin(4x).$$

SOLUCIÓN:

i) De la condición inicial u(x,0) = f(x) se deduce que

$$u(x,0) = f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{L}x\right).$$

Para obtener los valores de los coeficientes A_n , fijamos $m \in \mathbb{Z}^+$ e integramos la ecuación anterior, previamente multiplicada por sin $(\frac{m\pi}{L}x)$,

$$\int_0^L f(x) \sin\left(\frac{m\pi}{L}x\right) dx = \sum_{n=1}^\infty A_n \int_0^L \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = A_m \frac{L}{2},$$

donde en la última igualdad hemos tenido en cuenta la fórmula integral del enunciado, con lo que

$$A_m = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{m\pi}{L}x\right) dx,$$

con $m \in \mathbb{Z}^+$.

ii) Considerando que $L=\pi$ y $f(x)=3\sin{(2x)}+\frac{5}{3}\sin{(4x)}$, se obtiene que $A_n=0$, si $n\neq 2,4$ y que $A_2=3$ y $A_4=\frac{5}{3}$. Finalmente,

$$u(x,t) = 3e^{-4kt} \sin(2x) + \frac{5}{3}e^{-16kt} \sin(4x)$$
.

Cuestión 2 Dado el siguiente problema de ecuación del calor:

$$\begin{array}{lcl} \frac{\partial u}{\partial t}(x,t) & = & 4\frac{\partial^2 u}{\partial x^2}(x,t)\,, & 0 < x < \pi\,,\ t > 0 \\ \\ u(0,t) & = & 0\,\,,\,\,\frac{\partial u}{\partial x}(\pi,t) = 0\,, & t > 0\,,\ (\text{condiciones frontera}) \\ u(x,0) & = & f(x)\,, & 0 \le x \le \pi\ (\text{condición inicial con}\ f(x)\ \text{función conocida}) \end{array}$$

Se pide:

- 1. Aplicar el método de separación de variables tomando u(x,t) = X(x)T(t) y hallar la ecuación diferencial que satisface la función T(t)
- 2. Demostrar que la función X(x) satisface el problema de contorno:

$$X''(x) + \lambda X(x) = 0; \quad X(0) = 0; \quad X'(\pi) = 0;$$

3. Hallar los autovalores y las autofunciones del problema del apartado ii)

SOLUCIÓN:

Aplicamos la técnica de separación de variables.
 Descompenemos u como producto de dos funciones

$$u(x,t) = X(x)T(t)$$

y sustituimos en la EDP del enunciado. Multiplicamos la ecuación resultante por $\frac{1}{4XT}$ obteniendo

$$\frac{X''(x)}{X(x)} = \frac{T'(t)}{4T(t)} = -\lambda,$$

donde λ es la constante de separación.

La ecuación diferencial que satisface la función T(t) es:

$$T'(t) + 4\lambda T(t) = 0$$

2. De la ecuación $\frac{X''(x)}{X(x)} = \frac{T'(t)}{4T(t)} = -\lambda$ obtenemos el problema de contorno

$$X''(x) + \lambda X(x) = 0; \quad X(0) = 0; \quad X'(\pi) = 0;$$

3. Resolvamos la EDO

$$X''(x) + \lambda X(x) = 0$$

donde las constantes de integración se deducirán de las condiciones de contorno X(0) = 0, $X'(\pi) = 0$. De la ecuación característica $r^2 + \lambda = 0$ se obtiene que

$$r = \pm \sqrt{-\lambda}$$
.

Debemos considerar casos con los posibles valores de λ .

Si $\lambda = 0$ las raíces de la ecuación característica son iguales y nulas, con lo que se obtiene

$$X(x) = Ae^{0 \cdot x} + Bxe^{0 \cdot x} = A + Bx$$

Al aplicar las condiciones de contorno se obtiene que A=0=B, con lo que X(x)=0. Decartamos el valor de $\lambda=0$ por darnos la solución trivial.

Si $\lambda < 0$ las raíces de la ecuación característica son $r = \pm \sqrt{-\lambda} \in \mathbb{R}$, con lo que se obtiene

$$X(x) = Ae^{x\sqrt{-\lambda}} + Be^{-x\sqrt{-\lambda}}$$

Al aplicar las condiciones de contorno se obtiene que A=0=B, con lo que X(x)=0. Descartamos el valor de $\lambda < 0$ por darnos la solución trivial.

Si $\lambda>0$ las raíces de la ecuación característica son $r=\pm i\sqrt{\lambda}$, con lo que se obtiene la solución

$$X(x) = A\cos(x\sqrt{\lambda}) + B\sin(x\sqrt{\lambda}).$$

De X(0) = 0 se obtiene que A = 0.

Calculemos ahora X'(x) para aplicar la condición $X'(\pi) = 0$:

$$X'(x) = B\sqrt{\lambda}\cos(x\sqrt{\lambda})$$

$$X'(\pi) = 0 = B\sqrt{\lambda}\cos(\pi\sqrt{\lambda}),\,$$

con lo que

$$B\sqrt{\lambda}\cos(\pi\sqrt{\lambda}) = 0.$$

B debe ser distinto de cero para no volver a obtener la solución trivial.

Por lo tanto $\cos(\pi\sqrt{\lambda}) \Rightarrow \hat{\pi\sqrt{\lambda}} = (2n+1)\frac{\pi}{2}, n = 0, 1, 2, \dots$

Los autovalores son:

$$\lambda_n = \left(n + \frac{1}{2}\right)^2, n = 0, 1, 2, \dots,$$

con lo que las autofunciones quedan :

$$X_n = B_n \sin\left((n+1/2)x\right)$$

Cuestión 3 Consideremos el siguiente modelo de ecuación del calor:

Ecuación en Derivadas Parciales (EDP) : $\frac{\partial^2 u}{\partial x^2}(x,t) = \frac{\partial u}{\partial t}(x,t)$, t > 0, $0 < x < \pi/3$

Condiciones de Contorno (CC) : $\frac{\partial u}{\partial x}(0,t) = 0\,, \ \, \frac{\partial u}{\partial x}(\pi/3,t) = 0\,, \ \, t>0\,,$ Condición Inicial (CI) : $u(x,0) = 2x+1\,, \ \, 0 \leq x \leq \pi/3\,.$

Aplicando separación de variables $u(x,t) = X(x) T(t) \not\equiv 0$, se pide:

i) Demostrar que X(x) satisface el siguiente problema de valores en la frontera:

$$X'' + \lambda X = 0$$
; $X'(0) = 0$; $X'(\pi/3) = 0$;

y hallar los valores de la constante de separación $\lambda \geq 0$ que dan lugar a soluciones no nulas.

ii) Sabiendo que la solución u(x,t) se puede expresar como:

$$u(x,t) = \sum_{n=0}^{\infty} A_n e^{-9n^2 t} \cos(3nx) ; \quad \text{con } A_n \in \mathbb{R},$$

hallar el valor aproximado de $u(\pi/6, 1/9)$, tomando solamente los tres primeros sumandos de la serie anterior.

Nota: Puede ser útil el siguiente resultado:

• Dados
$$L > 0$$
 y $m, n \in \mathbb{N} \cup \{0\}$, se tiene que:
$$\int_0^L \cos\left(\frac{m\pi}{L}x\right) \cos\left(\frac{n\pi}{L}x\right) dx = \begin{cases} 0; & m \neq n \\ L/2; & m = n \neq 0 \\ L; & m = n = 0 \end{cases}$$

SOLUCIÓN:

i) Al aplicar separación de variables, se obtiene que: $\frac{T'}{T} = \frac{X''}{X} = -\lambda$, siendo λ la constante de separación. Por tanto: $X'' + \lambda X = 0$. Para obtener los valores en la frontera, debemos aplicar las CC.

$$\frac{\partial u}{\partial x}(0,t) = X'(0)T(t) = 0 \Longrightarrow X'(0) = 0;$$
 pues la igualdad es cierta $\forall t \ y \ T(t) \not\equiv 0$

$$\frac{\partial u}{\partial x}(\pi/3,t) = X'(\pi/3)T(t) = 0 \Longrightarrow X'(\pi/3) = 0;$$
 pues la igualdad es cierta $\forall t \ y \ T(t) \not\equiv 0$

Para hallar las soluciones no nulas distinguimos dos casos:

Caso 1: $\lambda = 0$

 $X''=0 \Longrightarrow X(x)=c_1x+c_2\;;\;c_1\in\mathbb{R}\;,c_2\in\mathbb{R}\;.$ Dado que $X'(x)=c_1,$ se tiene que $X'(0)=0=c_1=X'(\pi/3),$ por tanto cuando $\lambda=0$, se obtiene que $X(x)=c_2\neq 0$ es solución no nula del problema.

Caso 2: $\lambda > 0$

Tomamos $\lambda = a^2$, con a > 0. La ecuación característica es: $r^2 + a^2 = 0 \Longrightarrow r = \pm ia$, $i \in \mathbb{C}$, por tanto

$$X(x) = c_1 \cos(ax) + c_2 \sin(ax); \text{ además } X'(x) = -ac_1 \sin(ax) + ac_2 \cos(ax), \text{ con } c_1 \in \mathbb{R}, c_2 \in \mathbb{R}.$$

Aplicado las CC: $X'(0) = 0 \Longrightarrow c_2 = 0$; $X'(\pi/3) = 0 \Longrightarrow -ac_1\sin(a\pi/3) = 0$, imponiendo que $c_1 \neq 0$, se tiene: $\sin(a\pi/3) = 0 \Longrightarrow a\pi/3 = n\pi \Longrightarrow a = 3n, n = 1, 2, 3, \cdots$ Por tanto $\lambda = (3n)^2 = 9n^2$; $n = 1, 2, 3, \cdots$

ii) Debemos calcular:

$$u(\pi/6, 1/9) \approx A_0 + A_1 e^{-1} \cos(\pi/2) + A_2 e^{-4} \cos(\pi) = A_0 - \frac{A_2}{e^4}$$

Para calcular los coeficientes A_0 y A_2 , aplicamos la CI y se tiene:

$$u(x,0) = \sum_{n=0}^{\infty} A_n \cos(3nx) = f(x) = 2x + 1$$

Usando las condiciones de ortogonalidad de la nota del enunciado, sabemos que los coeficientes A_n verifican:

$$A_0 = \frac{1}{L} \int_0^L f(x) dx = \frac{3}{\pi} \int_0^{\pi/3} (2x+1) dx = 1 + \pi/3$$

$$(n \ge 1), A_n = \frac{2}{L} \int_0^L f(x) \cos(3nx) dx = \frac{6}{\pi} \int_0^{\pi/3} (2x+1) \cos(3nx) dx \Longrightarrow$$

$$A_2 = \frac{6}{\pi} \int_0^{\pi/3} (2x+1) \cos(6x) dx = \frac{1}{\pi} \left[(2x+1) \sin(6x) + \frac{1}{3} \cos(6x) \Big|_0^{\pi/3} = 0 \right]$$

La aproximación pedida es: $u(\pi/6, 1/9) \approx 1 + \frac{\pi}{3}$

Cuestión 4 Consideremos el siguiente modelo de ecuación del calor:

$$\begin{split} \frac{\partial^2 u}{\partial x^2}(x,t) &= \frac{\partial u}{\partial t}(x,t)\,, \ t>0\,, \ 0< x<\pi/3\\ \frac{\partial u}{\partial x}(0,t) &= 0\,, \ \frac{\partial u}{\partial x}(\pi/3,t) &= 0\,, \ t>0\,,\\ u(x,0) &= 2x+1\,, \ 0\leq x\leq \pi/3\,. \end{split}$$

- (a) Aplicando el método de separación de variables $u(x,t) = X(x)T(t) \not\equiv 0$, demostrar que $T(t) = ce^{-\alpha t}$, siendo $c \in \mathbb{R} \setminus \{0\}$, y α la constante de separación.
- (b) Demostrar que X(x) satisface el siguiente problema de valores en la frontera:

$$X'' + \alpha X = 0$$
; $X'(0) = 0$; $X'(\pi/3) = 0$;

y hallar los valores de $\alpha \geq 0$ que dan lugar a soluciones no nulas.

(c) Hallar la solución u(x,t) del problema.

SOLUCIÓN:

- (a) Al aplicar separación de variables en la EDP se obtiene: $X''T = XT' \Longrightarrow \frac{T'}{T} = \frac{X''}{X} = -\alpha$, donde α es la constante de separación. Tomando el primer término de la igualdad $\frac{T'}{T} = -\alpha$, se obtiene la ecuación diferencial ordinaria lineal de primer orden $T' + \alpha T = 0$, cuyas soluciones no nulas son: $T(t) = ce^{-\alpha t}$, siendo $c \in \mathbb{R} \setminus \{0\}$ constante.
- (b) Del apartado anterior se tiene que: $\frac{X''}{X} = -\alpha$, por tanto: $X'' + \alpha X = 0$. Para obtener los valores en la frontera, debemos aplicar las CC.

$$\frac{\partial u}{\partial x}(0,t) = X'(0)T(t) = 0 \Longrightarrow X'(0) = 0; \quad \text{pues la igualdad es cierta } \forall t \ y \ T(t) \not\equiv 0$$

$$\frac{\partial u}{\partial x}(\pi/3,t) = X'(\pi/3)T(t) = 0 \Longrightarrow X'(\pi/3) = 0;$$
 pues la igualdad es cierta $\forall t \ y \ T(t) \not\equiv 0$

Para hallar las soluciones no nulas distinguimos dos casos:

Caso 1: $\alpha = 0$

 $X''=0 \Longrightarrow X(x)=c_1x+c_2\;;\;c_1\in\mathbb{R}\;,c_2\in\mathbb{R}\;.$ Dado que $X'(x)=c_1,$ se tiene que $X'(0)=0=c_1=X'(\pi/3),$ por tanto cuando $\alpha=0$, se obtiene que $X(x)=c_2\neq 0$ es solución no nula del problema.

Caso 2: $\alpha > 0$

Tomamos $\alpha=a^2$, con a>0. La ecuación característica es: $r^2+a^2=0 \Longrightarrow r=\pm ia\,, i\in\mathbb{C},$ por tanto

$$X(x) = c_1 \cos(ax) + c_2 \sin(ax)$$
; además $X'(x) = -ac_1 \sin(ax) + ac_2 \cos(ax)$, con $c_1 \in \mathbb{R}$, $c_2 \in \mathbb{R}$.

Aplicado las CC: $X'(0) = 0 \Longrightarrow c_2 = 0$; $X'(\pi/3) = 0 \Longrightarrow -ac_1\sin(a\pi/3) = 0$, imponiendo que $c_1 \neq 0$, se tiene: $\sin(a\pi/3) = 0 \Longrightarrow a\pi/3 = n\pi \Longrightarrow a = 3n, n = 1, 2, 3, \cdots$ Por tanto $\alpha = (3n)^2 = 9n^2$; $n = 1, 2, 3, \cdots$

(c) Teniendo en cuenta los apartados anteriores se tiene que

$$u(x,t) = \sum_{n=0}^{\infty} A_n e^{-9n^2 t} \cos(3nx) \; ; \quad \text{con } A_n \in \mathbb{R} \, ,$$

donde los coeficientes A_n se obtienen a partir de la condición inicial (CI)

$$u(x,0) = \sum_{n=0}^{\infty} A_n \cos(3nx) = f(x) = 2x + 1$$

donde A_n verifica:

$$A_0 = \frac{1}{L} \int_0^L f(x) dx = \frac{3}{\pi} \int_0^{\pi/3} (2x+1) dx = 1 + \pi/3$$

$$(n \ge 1), A_n = \frac{2}{L} \int_0^L f(x) \cos(3nx) dx = \frac{6}{\pi} \int_0^{\pi/3} (2x+1) \cos(3nx) dx,$$

esta última integral se puede finalmente calcular por partes.

Cuestión 5 Dado el siguiente problema de ecuación del calor:

$$\begin{split} &2\frac{\partial^2 u}{\partial x^2}(x,t)=\frac{\partial u}{\partial t}(x,t)\,,\qquad 0< x<\pi\ ,\quad t>0\\ &u(0,t)=0,\quad u(\pi,t)=0\ ,\qquad t>0\ ,\quad \text{(condiciones de frontera)}\\ &u(x,0)=f(x)\ ,\qquad 0\leq x\leq \pi \qquad \text{(condición inicial)} \end{split}$$

- a) Aplicar el método de separación de variables tomando $u(x,t) = X(x)T(t) \neq 0$ y hallar la ecuación diferencial que satisface la función T(t), tomando como constante de separación $\lambda \in \mathbb{R}$.
- b) Hallar el problema de contorno que satisface la función X(x) y los valores de $\lambda > 0$ que dan lugar a soluciones no nulas.
- c) Escribir la solución general u(x,t) del problema y obtener la solución concreta cuando $f(x)=2(\sin(3x)-\sin(4x))$.

SOLUCIÓN:

- a) Aplicando separación de variables $\frac{T'(t)}{2T(t)} = -\lambda = \frac{X''(x)}{X(x)}$, por tanto la ecuación diferencial que satisface T(t) es: $T'(t) + 2\lambda T(t) = 0$
- b) El problema de contorno que satisface X(x) es: $X''(x) + \lambda X(x) = 0$, $X(0) = 0 = X(\pi)$ El problema propuesto indica que $x \in [0, L = \pi]$, por tanto al resolver la ecuación diferencial anterior se obtienen soluciones no nulas cuando $\lambda = \left(\frac{n\pi}{L}\right)^2 = n^2$, con $n = 1, 2, \dots$ y las soluciones no nulas son de la forma $X_n(x) = a_n \sin(nx)$, siendo a_n constante.

c) La solución general del problema propuesto es:

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-2n^2 t} \sin(nx) ; \quad \text{con } A_n \in \mathbb{R}.$$

Teniendo en cuenta la condición inicial

$$u(x,0) = \sum_{n=0}^{\infty} A_n \sin(nx) = 2(\sin(3x) - \sin(4x)) = f(x) :;$$

Identificando coeficientes, $A_1=A_2=0$; $A_3=2$; $A_4=-2$; $A_n=0$ $\forall n\geq 5$, por tanto la solución concreta pedida es:

$$u(x,t) = 2e^{-18t}\sin(3x) - 2e^{-32t}\sin(4x) .$$

Cuestión 6 Hallar la solución del siguiente modelo de ecuación del calor, siguiendo los pasos que se indican:

Ecuación en Derivadas Parciales (EDP) : $\frac{\partial u}{\partial t}(x,t) = 4\frac{\partial^2 u}{\partial x^2}(x,t)$; t>0, 0< x<4, Condiciones de Contorno (CC) : u(0,t)=0, u(4,t)=0; t>0, Condición Inicial (CI) : (i) $u(x,0)=f(x)=4\sin(\frac{3\pi}{4}x)$.

- Paso 1: Tomando $u(x,t) = X(x) T(t) \not\equiv 0$, aplicar el método de separación de variables, llamando λ a la constante de separación.
- Paso 2: Demostrar que la función T(t) satisface la ecuación $T' + 4\lambda T = 0$, y resolverla.
- Paso 3: Demostrar que X(x) satisface el siguiente problema de valores en la frontera:

$$X'' + \lambda X = 0$$
; $X(0) = 0$; $X(4) = 0$;

y hallar los valores $\lambda > 0$ que dan lugar a soluciones no nulas.

- Paso 4: Escribir la solución u(x,t) en forma de serie, teniendo en cuenta las funciones T(t) y X(x) obtenidas en los pasos 2 y 3.
- Paso 5: Usar la condición inicial (CI) para hallar, finalmente, la solución del modelo.

SOLUCIÓN:

Paso 1: Aplicado separación de variables a la ecuación en derivadas parciales se obtiene:

$$XT' = 4X''T \implies \frac{XT'}{4XT} = \frac{4X''T}{4XT} \implies \frac{X''}{X} = -\lambda = \frac{T'}{4T},$$

donde λ es la constante de separación.

- Paso 2: Teniendo en cuenta la última igualdad del paso anterior se tiene inmediatamente que $T'+4\lambda T=0$, que es una ecuación diferencial ordinaria lineal y su solución general es: $T(t)=c\,e^{-4\lambda\,t}$, donde c es una constante.
- Paso 3: Teniendo en cuenta la penúltima igualdad del paso 1, se deduce que $X'' + \lambda X = 0$. Por otro lado, aplicando las condiciones de contorno

$$u(0,t) = X(0)T(t) = 0, \forall t \Longrightarrow X(0) = 0, \quad u(4,t) = X(4)T(t) = 0, \forall t \Longrightarrow X(4) = 0,$$

por tanto X satisface $X'' + \lambda X = 0$; X(0) = 0; X(4) = 0; como se pedía. Las soluciones no nulas del problema de contorno se obtienen para:

 $\lambda_n = \left(\frac{n\pi}{4}\right)^2$, con $n = 1, 2, 3, \dots$, siendo $X_n(x) = c_n \sin\left(\frac{n\pi x}{4}\right)$, para $n = 1, 2, 3, \dots$, donde c_n son constantes no nulas.

Paso 4: La solución en forma de serie es:

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{n\pi}{4}\right)^2 4t} \sin\left(\frac{n\pi x}{4}\right), \quad \text{con } A_n \in \mathbb{R}.$$

Paso 5: Usando la condición inicial (CI)

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{4}\right) = f(x) = 4\sin(\frac{3\pi}{4}x)$$

Las constantes A_n se pueden obtener a partir de las fórmulas deducidas en la teoría del modelo de ecuación del calor, o bien, las podemos hallar de una forma más fácil en este problema concreto mediante identificación:

$$A_1 = 0, A_2 = 0, A_3 = 4, A_n = 0 \quad \forall n \geq 4.$$

Finalmente, la solución del problema es:

$$u(x,t) = 4e^{-\frac{9\pi^2}{4}t}\sin(\frac{3\pi}{4}x)$$