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Modeling.

General concepts. Existence and uniqueness. Direction field for a
first-order ODE.
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Numerical solutions: Euler, Heun and Runge-Kutta methods.

Long term behavior of solutions. Qualitative analysis of solutions.
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Modeling

Galileo’s model

y ′′ = −g , 0 ≤ t ≤ T ,

y(0) = 0, y ′(0) = v0.

(a) y0 = 0, v0 = 2, 4, 6. (b) y0 = 2, v0 = 2, 4, 6.
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Modeling

Newton’s model

my ′′ = −mg − cy ′, 0 ≤ t ≤ T ,

y(0) = 0, y ′(0) = v0.

(a) c/m = 3; (b) c/m = 10.

Applied Differential Calculus (OCW-UC3M) Lecture 1 6 / 29



Modeling

Modeling a fish population, 1

y ′ = (Birth rate)− [(Death rate) + (Harvesting rate)],

measured in tons per year. Simplest model: birth and death rates
proportional to y(t). a = b − d > 0 is growth rate:

y ′ = ay − H, y(t0) = y0.

Solution by integrating factor:

−eµ(t)H = eµ(t)(y ′ − ay) =
d

dt

(
eµ(t)y

)
= eµ(t)(y ′ + µ′y) =⇒ µ′ = −a.

Then µ = −at and we get e−aty = c + H
a e
−at or y(t) = H

a + ceat .

y(t) =
H

a
+

(
y0 −

H

a

)
ea(t−t0).
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Modeling

Modeling a fish population, 2

(a) (b)

Exponential population growth with no harvesting: IVP with a = 1, H = 0
in (a) and H = 5/3 in (b), and various values for y0.

y(t) =
H

a
+

(
y0 −

H

a

)
eat (t0 = 0).
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Modeling

Fish population with logistic growth

Limitation to growth due to overcrowding

y ′ = ay − cy2 − H, y(0) = y0, t ≥ 0.

Solution formula is complicated. We find it later by separation of variables.
Qualitative behavior of solution curves. We do one example: a = 1,
c = 1

12 , H = 5
3 , so that

y ′ = − 1

12
(y − 10)(y − 2) := f (y), y(0) = y0, t ≥ 0.

f (y) = 0 for y = 10, y = 2. These are equilibrium solutions.

2 10y

0

f(y) = − (y− 2)(y− 10)

12

t

2

10
y
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Modeling

Separation of variables

By analysis of phase line, solution curves go to equilibrium solutions with
f ′ < 0 as t → +∞ and to equilibrium solutions with f ′ > 0 as t → −∞.

Separation of variables:

y ′ = − 1

12
(y − 10)(y − 2) =⇒ −dt

12
=

dy

(y − 10)(y − 2)
.

− t

12
+ C =

1

8

∫ (
1

y − 10
− 1

y − 2

)
dy =

1

8
ln

∣∣∣∣y − 10

y − 2

∣∣∣∣.
10− y

y − 2
= Ke−2t/3 =⇒ y(t) =

10 + 2Ke−2t/3

1 + Ke−2t/3
,

with K = 10−y0
y0−2 e2t0/3 provided 2 < y0 < 10.

As t increases from −∞ to +∞, solution curves go from 2 to 10.
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Existence and uniqueness

Theorem

Theorem of existence and uniqueness. Provided f and ∂f /∂y are
continuous in a rectangle R and (t0, y0) is inside R, the IVP:

y ′ = f (t, y),

y(t0) = y0,

has a unique solution for |t − t0| < δ (for some δ > 0 that leaves t in the
rectangle R). The IVP has a solution (existence) but no more than one
solution in R on any t-interval containing t0 (uniqueness).
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Existence and uniqueness

What if assumptions of theorem do not hold?

y ′ = 2y1/2, y(t0) = y0.

f (y) = 2y1/2 continuous for all y ≥ 0 but f ′(y) = y−1/2 not continuous at
y = 0. One of the theorem conditions fails for rectangles about any point

(t0, 0). Separation of variables give t − t0 = y1/2 − y
1/2
0 , i.e.,

y = (y
1/2
0 + t − t0)2 for any y0 > 0. This solution holds for y0 = 0 but

there are infinitely many solutions of the same IVP: y = 0 and:

y(t) =

{
0, t < s

(t − s)2, t ≥ s ≥ t0.
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Existence and uniqueness

What if assumptions of theorem do not hold?

ty ′ − y = t2 cos t, t > 0 (f (t, y) =
y

t
+ t cos t not continuous at t = 0).

Multiplying by 1/t2, we get (y/t)′ = cos t, and therefore

y = t sin t + Ct, t > 0.

This formula gives solutions also for t ≤ 0 and all these solutions satisfy
y(0) = 0. The IVP with: y(0) = 0 has infinitely many solutions whereas
any IVP with initial condition y(0) = y0 6= 0 has no solution at all!

10 5 0 5 10
t

20

10

0

10

20

y

ty ′ − y= t2cost, y(0) = 0
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Direction fields

Direction field

Direction field in the (x , y) plane for the ODE y ′ = 9.8− 0.2y showing the
equilibrium solution y∗ = 9.8/0.2 = 49. This ODE describes how a body
weighting 1 kg falls, if its velocity is y(x) and its friction force is ky , with
k = 0.2 kg/s. y∗ = 49 m/s is the limiting velocity.
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Direction fields

Direction field
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Figure: Sectors: (left) decreasing and increasing y(x), (center) concave and
convex y(x), (right) combined information about signs of y ′ and y ′′ for the ODE
y ′ = xy(y − 2). We have used y ′′ = ∂f

∂x + ∂f
∂y f = y(y − 2)(1 + 2x2y − 2x2).
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Direction fields

Direction field and solution curves

Figure: Slope field and trajectories in the (x , y) plane for the ODE y ′ = xy(y −2).
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Direction fields

Direction field and solution curves

Figure: Solution curves come arbitrarily close for large positive and
negative values of t − t0.
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Direction fields

Direction field for periodic harvesting

Figure: y ∼ 1 + 0.2 cos t as t → +∞ for y(0) > 0.1, y → −∞ otherwise.
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Exact solutions

Exact solutions

Separable ODE:
M(x) + N(y)y ′ = 0 =⇒

∫
M(x)dx = −

∫
N(y)dy + c .

Exact ODE: M(x , y) + N(x , y)y ′ = 0, ∂M∂y = ∂N
∂x .

Linear ODE: y ′ + a(x)y = F (x). Use integrating factor I = e
∫
a(x)dx

to get trivial ODE (Iy)′ = F (x)I (x). Then
y = e−

∫
a(x)dx [

∫
F (x ′)e

∫
a(x ′)dx ′dx ′ + c].

Bernoulli ODE: y ′ = a(x)y + b(x)yP . Use u = y1−P to get linear
ODE.

Riccati ODE: y ′ = a(x)y + b(x)y2 + c(x). Find particular solution,
transform in Bernoulli by y = yp(x) + u(x).

Substitutions: For y ′ = F (y/x), u = y/x gives u′ = [F (u)− u]/x .
x = av + bw + c, y = dv + ew + f , with appropriate a, . . . , f ,
converts y ′ = (Ax + By + C )/(Dx + Ey + F ) in a separable ODE for
w(v).
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Numerical solutions: Euler, Heun and RK methods

Euler method for dy
dt = f (t, y)

t

y

(t1, y1)

(t2, y2)

(t3, y3)

t0 t1 t2 t3

y0
y = ϕ(t)

y = ϕ1(t)

y = ϕ2(t)

Figure: The explicit (forward) Euler method yj+1 = yj + f (tj , yj)h, y0 = y(t0) ,
approximates a given trajectory y = ϕ(t) by segments that move it to nearby
trajectories ϕ1(t), ϕ2(t), . . . in the (t, y) plane.
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Numerical solutions: Euler, Heun and RK methods

Truncation error. Suppose IVP y ′ = f (t, y), y(t0) = y0, is approximated
by one-step numerical scheme yj+1 = yj + Φ(tj , yj , yj+1, h) h. Define the
local truncation error or discretization error of the scheme as:

τj+1 =
y(tj+1)− y(tj)

h
− Φ(tj , y(tj), y(tj+1), h), j = 0, 1, . . . ,N − 1,

where we substitute the exact solution y(tj) instead of yj . If the τj vanish
as h→ 0, we say that the difference equations are consistent with the
differential equation. A consistent one-step scheme is also convergent, i.e.,
the global truncation error ej = y(tj)− yj tends to 0 with h.
Note: ej+1− ej = hΦ(tj , y(tj), y(tj+1), h)− hΦ(tj , yj , yj+1, h) + hτj+1. For
the Euler method Φ(tj , yj , yj+1, h) = f (tj , yj), the Taylor theorem gives

y(tj+1)− y(tj)

h
=

y(tj + h)− y(tj)

h
=

dy(tj)

dt
+

h

2

d2y(ξ)

dt2

= f (y(tj), tj) +
h

2

d2y(ξ)

dt2
=⇒ τj+1 =

h

2

d2y(ξ)

dt2
= O(h).

Applied Differential Calculus (OCW-UC3M) Lecture 1 21 / 29



Numerical solutions: Euler, Heun and RK methods

Heun and RK2 methods

Heun:

yj+1 = yj +
h

2
[f (tj , yj) + f (tj + h, pj+1)], pj+1 = yj + hf (tj , yj).

RK2:

yj+1 = yj + Ahf (tj , yj) + Bh f (tj + Ph, yj + Qhf (tj , yj)),

with

A + B = 1, BP =
1

2
, BQ =

1

2
.

Heun is RK2 with A = 1
2 . Modified Euler (midpoint) is RK2 with A = 0.
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Long term behavior of solutions

Long term behavior and control of linear IVPs

First order linear ODE:

y ′ + p(t)y = q(t), y(0) = y0, t ≥ 0.

Solution:

y(t) = y0e
−P(t) + e−P(t)

∫ t

0
eP(s)q(s) ds, P(t) =

∫ t

0
p(s) ds.

Bounded Input-Bounded Output (BIBO): p(t) continuous, q(t) piecewise
continuous on t ≥ 0, p0, M positive numbers,

p(t) ≥ p0, |q(t)| ≤ M, t ≥ 0.

Then the solution of the IVP:

|y(t)| ≤ |y0|+
M

p0
, t ≥ 0.

.
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Long term behavior of solutions

Control of a chemical reactor

First order linear ODE (reaction A→ B with leaky entrance of A in
reactor):

y ′ =
r(t)

V (t)
− ky =⇒ y ′ + ky =

r(t)

V (t)
.

Assume: V (t) ≥ V0 > 0 (reactor never runs dry), bounded inflow rate
r(t) ≤ r0. Then

0 ≤ r(t)

V (t)
≤ r0

V0
,

BIBO theorem (p0 = k > 0, M = r0/V0, y(0) > 0):

|y(t)| ≤ y(0) +
r0
kV0

.

Assume y(t) cannot exceed K > 0 by design specifications. Criteria are
met for:

y(0) ≤ K

2
, r0 ≤

kV0K

2
=⇒ |y(t)| ≤ K .
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Qualitative analysis of solutions

Long term behavior for autonomous ODEs

Theorem. Let f (y), f ′(y) be continuous for all y . Let y(t) be a solution
of the ODE y ′ = f (y) which is bounded for all t ≥ 0 (respectively for all
t < 0). Then as t → +∞ (resp. t → −∞),y(t) approaches an equilibrium
solution of the ODE (y∗ such that f (y∗) = 0).
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Figure: State (phase) line and solution curves for logistic ODE with harvesting.
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Qualitative analysis of solutions

Sensitivity to changes in data

Attractor, repeller and semistable equilibrium solutions.

Attractor: all solution curves in a neighborhood thereof approach it as
t → +∞. If y0 is an attractor, then small changes in the initial data
near y0 have no effect on the long time behavior of the solution.

Repeller: all solution curves in a neighborhood thereof depart from it
as t → +∞ (and approach it as t → −∞). If y0 is a repeller or a
semistable equilibrium solution, then small changes in the initial data
near y0 lead to drastic changes in the solution in the long term.

On a small enough neighborhood, an attractor/repeller or semistable
solution attracts all initial data to one side of it on the phase line and
repels all initial data to the other side.
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Qualitative analysis of solutions

Bifurcations: a logistic harvested model

Bifurcation analysis of the ODE y ′ = f (y , c). Stages:

Track the equilibrium solutions as they move, merge, split up, or
disappear with changes in c .

Describe the qualitative effects of these changes in c on the long term
behavior of non-equilibrium solutions.

Summarize solution behavior as c changes in a bifurcation diagram.

Typical behaviors:

Saddle-node bifurcation y ′ = y(1− y) + c .

Pitchfork bifurcation y ′ = (c − y2)y .

Applied Differential Calculus (OCW-UC3M) Lecture 1 27 / 29



Qualitative analysis of solutions

Bifurcations: a logistic harvested model

Saddle-node bifurcation y ′ = y(1− y) + c .
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Qualitative analysis of solutions

Bifurcations

Pitchfork bifurcation y ′ = (c − y2)y .
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