Applied Differential Calculus Lecture 1: First-order ordinary differential equations

Authors: Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin, Rocío Vega

Bachelor's Degree in Computer Science and Engineering and Dual Bachelor in Computer Science and Engineering and Business Administration.

Outline

- Modeling.
- General concepts. Existence and uniqueness. Direction field for a first-order ODE.
- Exact solutions for special ODEs.
- Numerical solutions: Euler, Heun and Runge-Kutta methods.
- Long term behavior of solutions. Qualitative analysis of solutions.

Problem solving via mathematical modeling

Problem solving via mathematical modeling

Modeling

Galileo's model

$$y'' = -g, \quad 0 \le t \le T,$$

 $y(0) = 0, \quad y'(0) = v_0.$

(a) $y_0 = 0$, $v_0 = 2$, 4, 6. (b) $y_0 = 2$, $v_0 = 2$, 4, 6.

Lecture 1

Modeling

Newton's model

$$m y'' = -mg - cy', \quad 0 \le t \le T,$$

 $y(0) = 0, \quad y'(0) = v_0.$

Lecture 1

Modeling a fish population, 1

y' = (Birth rate) - [(Death rate) + (Harvesting rate)],

measured in tons per year. Simplest model: birth and death rates proportional to y(t). a = b - d > 0 is growth rate:

$$y'=ay-H, \quad y(t_0)=y_0.$$

Solution by integrating factor:

$$-e^{\mu(t)}H = e^{\mu(t)}(y' - ay) = \frac{d}{dt}\left(e^{\mu(t)}y\right) = e^{\mu(t)}(y' + \mu'y) \Longrightarrow \mu' = -a.$$

Then $\mu = -at$ and we get $e^{-at}y = c + \frac{H}{a}e^{-at}$ or $y(t) = \frac{H}{a} + ce^{at}$.

$$y(t) = \frac{H}{a} + \left(y_0 - \frac{H}{a}\right)e^{a(t-t_0)}$$

Modeling a fish population, 2

Exponential population growth with no harvesting: IVP with a = 1, H = 0 in (a) and H = 5/3 in (b), and various values for y_0 .

$$y(t) = \frac{H}{a} + \left(y_0 - \frac{H}{a}\right)e^{at}$$
 $(t_0 = 0).$

Fish population with logistic growth

Limitation to growth due to overcrowding

$$y'=ay-cy^2-H,\quad y(0)=y_0,\quad t\geq 0.$$

Solution formula is complicated. We find it later by separation of variables. Qualitative behavior of solution curves. We do one example: a = 1, $c = \frac{1}{12}$, $H = \frac{5}{3}$, so that

$$y' = -\frac{1}{12}(y-10)(y-2) := f(y), \quad y(0) = y_0, \quad t \ge 0.$$

f(y) = 0 for y = 10, y = 2. These are equilibrium solutions.

Applied Differential Calculus (OCW-UC3M)

Separation of variables

By analysis of phase line, solution curves go to equilibrium solutions with f' < 0 as $t \to +\infty$ and to equilibrium solutions with f' > 0 as $t \to -\infty$.

Separation of variables:

$$y' = -\frac{1}{12}(y - 10)(y - 2) \Longrightarrow -\frac{dt}{12} = \frac{dy}{(y - 10)(y - 2)}.$$
$$-\frac{t}{12} + C = \frac{1}{8} \int \left(\frac{1}{y - 10} - \frac{1}{y - 2}\right) dy = \frac{1}{8} \ln \left|\frac{y - 10}{y - 2}\right|.$$
$$\frac{10 - y}{y - 2} = Ke^{-2t/3} \Longrightarrow y(t) = \frac{10 + 2Ke^{-2t/3}}{1 + Ke^{-2t/3}},$$
$$K = \frac{10 - y_0}{y_0 - 2}e^{2t_0/3} \text{ provided } 2 < y_0 < 10.$$

As t increases from $-\infty$ to $+\infty$, solution curves go from 2 to 10.

with

Theorem

Theorem of existence and uniqueness. Provided f and $\partial f/\partial y$ are continuous in a rectangle R and (t_0, y_0) is inside R, the IVP:

$$y' = f(t, y),$$

$$y(t_0) = y_0,$$

has a unique solution for $|t - t_0| < \delta$ (for some $\delta > 0$ that leaves t in the rectangle R). The IVP has a solution (existence) but no more than one solution in R on any t-interval containing t_0 (uniqueness).

What if assumptions of theorem do not hold?

 $y' = 2y^{1/2}, \quad y(t_0) = y_0.$

 $f(y) = 2y^{1/2}$ continuous for all $y \ge 0$ but $f'(y) = y^{-1/2}$ not continuous at y = 0. One of the theorem conditions fails for rectangles about any point $(t_0, 0)$. Separation of variables give $t - t_0 = y^{1/2} - y_0^{1/2}$, i.e., $y = (y_0^{1/2} + t - t_0)^2$ for any $y_0 > 0$. This solution holds for $y_0 = 0$ but there are infinitely many solutions of the same IVP: y = 0 and:

$$y(t) = \left\{egin{array}{cc} 0, & t < s\ (t-s)^2, & t \geq s \geq t_0 \end{array}
ight.$$

What if assumptions of theorem do not hold?

$$ty' - y = t^2 \cos t$$
, $t > 0$ $(f(t, y) = \frac{y}{t} + t \cos t$ not continuous at $t = 0$).
Multiplying by $1/t^2$, we get $(y/t)' = \cos t$, and therefore

$$y=t\sin t+Ct,\quad t>0.$$

This formula gives solutions also for $t \le 0$ and all these solutions satisfy y(0) = 0. The IVP with: y(0) = 0 has infinitely many solutions whereas any IVP with initial condition $y(0) = y_0 \ne 0$ has no solution at all!

Direction field

Direction field in the (x, y) plane for the ODE y' = 9.8 - 0.2y showing the equilibrium solution $y^* = 9.8/0.2 = 49$. This ODE describes how a body weighting 1 kg falls, if its velocity is y(x) and its friction force is ky, with k = 0.2 kg/s. $y^* = 49$ m/s is the limiting velocity.

Direction field

Figure: Sectors: (left) decreasing and increasing y(x), (center) concave and convex y(x), (right) combined information about signs of y' and y'' for the ODE y' = xy(y-2). We have used $y'' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}f = y(y-2)(1+2x^2y-2x^2)$.

Direction field and solution curves

Figure: Slope field and trajectories in the (x, y) plane for the ODE y' = xy(y-2).

Direction field and solution curves

Figure: Solution curves come arbitrarily close for large positive and negative values of $t - t_0$.

Direction field for periodic harvesting

Figure: $y \sim 1 + 0.2 \cos t$ as $t \to +\infty$ for y(0) > 0.1, $y \to -\infty$ otherwise.

Exact solutions

- Separable ODE: $M(x) + N(y)y' = 0 \Longrightarrow \int M(x)dx = -\int N(y)dy + c.$
- Exact ODE: M(x, y) + N(x, y)y' = 0, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.
- Linear ODE: y' + a(x)y = F(x). Use integrating factor $I = e^{\int a(x)dx}$ to get trivial ODE (Iy)' = F(x)I(x). Then $y = e^{-\int a(x)dx} [\int F(x')e^{\int a(x')dx'} dx' + c]$.
- Bernoulli ODE: $y' = a(x)y + b(x)y^P$. Use $u = y^{1-P}$ to get linear ODE.
- Riccati ODE: $y' = a(x)y + b(x)y^2 + c(x)$. Find particular solution, transform in Bernoulli by $y = y_p(x) + u(x)$.
- Substitutions: For y' = F(y/x), u = y/x gives u' = [F(u) u]/x.
 x = av + bw + c, y = dv + ew + f, with appropriate a, ..., f, converts y' = (Ax + By + C)/(Dx + Ey + F) in a separable ODE for w(v).

Numerical solutions: Euler, Heun and RK methods

Euler method for $\frac{dy}{dt} = f(t, y)$

Figure: The explicit (forward) Euler method $y_{j+1} = y_j + f(t_j, y_j)h$, $y_0 = y(t_0)$, approximates a given trajectory $y = \varphi(t)$ by segments that move it to nearby trajectories $\varphi_1(t)$, $\varphi_2(t)$, ... in the (t, y) plane.

Truncation error. Suppose IVP y' = f(t, y), $y(t_0) = y_0$, is approximated by one-step numerical scheme $y_{j+1} = y_j + \Phi(t_j, y_j, y_{j+1}, h) h$. Define the local *truncation error* or discretization error of the scheme as:

$$au_{j+1} = rac{y(t_{j+1}) - y(t_j)}{h} - \Phi(t_j, y(t_j), y(t_{j+1}), h), \quad j = 0, 1, \dots, N-1,$$

where we substitute the exact solution $y(t_j)$ instead of y_j . If the τ_j vanish as $h \to 0$, we say that the difference equations are *consistent* with the differential equation. A consistent one-step scheme is also *convergent*, i.e., the *global truncation error* $e_j = y(t_j) - y_j$ tends to 0 with h. **Note:** $e_{j+1} - e_j = h\Phi(t_j, y(t_j), y(t_{j+1}), h) - h\Phi(t_j, y_j, y_{j+1}, h) + h\tau_{j+1}$. For the Euler method $\Phi(t_j, y_j, y_{j+1}, h) = f(t_j, y_j)$, the Taylor theorem gives

$$\frac{y(t_{j+1}) - y(t_j)}{h} = \frac{y(t_j + h) - y(t_j)}{h} = \frac{dy(t_j)}{dt} + \frac{h}{2}\frac{d^2y(\xi)}{dt^2}$$
$$= f(y(t_j), t_j) + \frac{h}{2}\frac{d^2y(\xi)}{dt^2} \Longrightarrow \tau_{j+1} = \frac{h}{2}\frac{d^2y(\xi)}{dt^2} = O(h).$$

Heun and RK2 methods

Heun:

$$y_{j+1} = y_j + \frac{h}{2}[f(t_j, y_j) + f(t_j + h, p_{j+1})], \quad p_{j+1} = y_j + hf(t_j, y_j).$$

$$y_{j+1} = y_j + Ahf(t_j, y_j) + Bhf(t_j + Ph, y_j + Qhf(t_j, y_j)),$$

with

$$A + B = 1$$
, $BP = \frac{1}{2}$, $BQ = \frac{1}{2}$.

Heun is RK2 with $A = \frac{1}{2}$. Modified Euler (midpoint) is RK2 with A = 0.

Long term behavior and control of linear IVPs

First order linear ODE:

$$y' + p(t)y = q(t), \quad y(0) = y_0, \quad t \ge 0.$$

Solution:

$$y(t) = y_0 e^{-P(t)} + e^{-P(t)} \int_0^t e^{P(s)} q(s) \, ds, \quad P(t) = \int_0^t p(s) \, ds.$$

Bounded Input-Bounded Output (BIBO): p(t) continuous, q(t) piecewise continuous on $t \ge 0$, p_0 , M positive numbers,

$$p(t) \ge p_0, \quad |q(t)| \le M, \quad t \ge 0.$$

Then the solution of the IVP:

$$|y(t)| \le |y_0| + \frac{M}{p_0}, \quad t \ge 0.$$

Control of a chemical reactor

First order linear ODE (reaction $A \rightarrow B$ with leaky entrance of A in reactor):

$$y'=rac{r(t)}{V(t)}-ky\Longrightarrow y'+ky=rac{r(t)}{V(t)}.$$

Assume: $V(t) \ge V_0 > 0$ (reactor never runs dry), bounded inflow rate $r(t) \le r_0$. Then

$$0 \leq rac{r(t)}{V(t)} \leq rac{r_0}{V_0},$$

BIBO theorem ($p_0 = k > 0, \ M = r_0/V_0, \ y(0) > 0$):
 $|y(t)| \leq y(0) + rac{r_0}{kV_0}.$

Assume y(t) cannot exceed K > 0 by design specifications. Criteria are met for:

$$y(0) \leq \frac{K}{2}, \quad r_0 \leq \frac{kV_0K}{2} \Longrightarrow |y(t)| \leq K.$$

Applied Differential Calculus (OCW-UC3M)

Long term behavior for autonomous ODEs

Theorem. Let f(y), f'(y) be continuous for all y. Let y(t) be a solution of the ODE y' = f(y) which is bounded for all $t \ge 0$ (respectively for all t < 0). Then as $t \to +\infty$ (resp. $t \to -\infty$), y(t) approaches an equilibrium solution of the ODE (y^* such that $f(y^*) = 0$).

Figure: State (phase) line and solution curves for logistic ODE with harvesting.

Sensitivity to changes in data

Attractor, repeller and semistable equilibrium solutions.

- Attractor: all solution curves in a neighborhood thereof approach it as $t \to +\infty$. If y_0 is an attractor, then small changes in the initial data near y_0 have no effect on the long time behavior of the solution.
- Repeller: all solution curves in a neighborhood thereof depart from it as t → +∞ (and approach it as t → -∞). If y₀ is a repeller or a semistable equilibrium solution, then small changes in the initial data near y₀ lead to drastic changes in the solution in the long term.
- On a small enough neighborhood, an attractor/repeller or semistable solution attracts all initial data to one side of it on the phase line and repels all initial data to the other side.

Bifurcations: a logistic harvested model

Bifurcation analysis of the ODE y' = f(y, c). Stages:

- Track the equilibrium solutions as they move, merge, split up, or disappear with changes in *c*.
- Describe the qualitative effects of these changes in *c* on the long term behavior of non-equilibrium solutions.
- Summarize solution behavior as c changes in a bifurcation diagram.

Typical behaviors:

- Saddle-node bifurcation y' = y(1 y) + c.
- Pitchfork bifurcation $y' = (c y^2)y$.

Bifurcations: a logistic harvested model

• Saddle-node bifurcation y' = y(1 - y) + c.

Bifurcations

• Pitchfork bifurcation $y' = (c - y^2)y$.

