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Universidad Carlos III de Madrid,

Bachelor’s Degree in Computer Science and Engineering and

Dual Bachelor in Computer Science and Engineering and Business Administration.

1



I. SECOND ORDER LINEAR ODES

This Lecture 2 deals with second-order linear ODEs and related IVPs. All notions can be

immediately generalized to nth order ODEs. Later, we shall explain how a similar theory

solves systems of first-order ODEs. Chapter 3 of the books by Boyce-Di Prima [1] and by

Simmons [4] contain a detailed description and are good reading.

The general form of a second-order linear ODE is

d2u

dt2
+ a1(t)

du

dt
+ a0(t)u = F (t), (1)

where aj(t) are continuous functions in the interval [t0, T ] where we want to solve the ODE.

We now that if up(t) is a particular solution of the inhomogeneous equation (1), then v(t) =

u(t)− u1(t) solves the homogeneous ODE:

d2u

dt2
+ a1(t)

du

dt
+ a0(t)u = 0. (2)

The superposition principle says that if u1(t) and u2(t) are solutions of (2), then u(t) =

c1u1(t) + c2u2(t), where c1 and c2 are numbers, is also a solution.

To check these statements is immediate.

The calculation of u1, u2 and up in terms of elementary functions can be done only in

particular cases, as we shall see later. However we can elaborate a general theory imagining

that we have been able to find these functions.

A. Second-order linear homogeneous ODE

We shall see that the general solution of (2) is a superposition of two linearly independent

solutions and therefore the dimension of the space of solutions is two. For this, we need a

criterion to distinguish linearly independent solutions.

Definition. Given two differentiable functions u1(t) and u2(t), their Wronskian deter-

minant is

W (u1, u2) =

∣∣∣∣∣∣ u1(t) u2(t)

u′1(t) u′2(t)

∣∣∣∣∣∣ . (3)

Lemma 1. Two differentiable functions, u1(t) and u2(t), are linearly dependent if and only

if their Wronskian determinant is identically zero.
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Proof. If W (u1, u2) = 0, we have u1u
′
2 − u′1u2 = 0, and therefore u′1/u1 = u′2/u2, which

integrated produces ln |u1| = ln |u2| + c. This gives u1(t) = ±ecu2(t) and therefore u1(t) =

ku2(t), with constant k = ±ec, and u1(t) depends linearly on u2(t). The reciprocal statement

is immediate.

It turns out that the Wronskian determinant can be calculated directly from the ODE (2):

d

dt
W (u1, u2) =

d

dt
(u1u

′
2 − u′1u2) = u1u

′′
2 − u′′1u2 = u1(−a1u

′
1 − a0u1)− u2(−a1u

′
2 − a0u2)

= −a1(u1u
′
2 − u′1u2), and therefore,

d

dt
W (u1, u2) = −a1(t)W (u1, u2), (4)

which is Abel’s formula.

Abel’s formula shows that the Wronskian determinant is either nonzero or identically zero.

In fact, (4) is a first-order linear ODE which can be solved by separation of variables:

W (u1, u2)(t) = W (u1, u2)(t0) exp

[
−
∫ t

t0

a1(s)ds

]
, (5)

and the only way the Wronskian be zero is that the constant of integration W (u1, u2)(t0) = 0.

How do we calculate u1(t) and u2(t)?

In general, we can use the existence and uniqueness theorem and define u1(t) as the unique

solution of the IVP:  u′′ + a1(t)u′ + a0(t)u = 0,

u(t0) = 1, u′(t0) = 0,
(6)

and u2(t) as the unique solution of the IVP: u′′ + a1(t)u′ + a0(t)u = 0,

u(t0) = 0, u′(t0) = 1.
(7)

To use the existence and uniqueness theorem, you need to write the second-order ODE as a

system of two first-order ODEs and check that the vector function in its right-hand side is

Lipschitz.

The solutions u1(t) and u2(t) defined by (6) and (7) are independent because of Abel’s
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formula (5) and

W (u1, u2)(t0) =

∣∣∣∣∣∣ u1(t0) u2(t0)

u′1(t0) u′2(t0)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣∣ = 1 6= 0, (8)

according to the initial conditions.

We can also show that any other solution of (2) is a linear combination of u1 and u2.

To do so, we construct the Wronskian

W (u1, u2, u) =

∣∣∣∣∣∣∣∣∣
u1(t) u2(t) u(t)

u′1(t) u′2(t) u′(t)

u′′1(t) u′′2(t) u′′(t)

∣∣∣∣∣∣∣∣∣ ,
and use (2) to show that this Wronskian is identically zero.

This proves that u1, u2 and u are linearly dependent and therefore any of them can be

written as a linear combination of the other two.

In other words, we have proved that the dimension of the space of solutions of (2) is two.

Example 1.

u′′ + 3u′ + 2u = 1. (9)

Clearly, up = 1/2, is a particular solution of (9).

The solutions of the homogeneous ODE are of the form: u = eλt.

Inserting this in the homogeneous ODE

u′′ + 3u′ + 2u = 0,

we find λ2 + 3λ+ 2 = 0. Its solutions are λ1 = −1 and λ2 = −2.

The Wronskian determinant is

W (e−t, e−2t) =

∣∣∣∣∣∣ e
−t e−2t

−e−t −2e−2t

∣∣∣∣∣∣ = −2e−3t + e−3t = −e−3t 6= 0, (10)

which proves that e−t and e−2t are independent.

As it should be, (10) agrees with Abel’s formula (5).

Then the general solution of the inhomogeneous problem is

u(t) =
1

2
+ c1e

−t + c2e
−2t. (11)
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Note that the solutions of (6) and (7) with t0 = 0 are u1(t) = 2e−t − e−2t and u2(t) =

e−t − e−2t, respectively.

B. Variation of parameters and inhomogeneous ODE

What happens if we do not spot a particular solution of (1) but we are able to find the

solutions of the homogeneous equation (2)?

In general, we can use variation of parameters for known solutions u1(t) and u2(t) of (2).

The idea is to replace the constants of integration c1 and c2 in the general solution for

unknown functions y1(t) and y2(t):

u(t) = y1(t)u1(t) + y2(t)u2(t). (12)

We have introduced two unknowns y1 and y2 instead of the original one, u(t). So we can

impose one additional restriction to get a unique solution.

If we take one derivative of (12),

u′(t) = y′1(t)u1(t) + y′2(t)u2(t) + y1(t)u′1(t) + y2(t)u′2(t), (13)

and impose that

y′1(t)u1(t) + y′2(t)u2(t) = 0, (14)

we guarantee that the second derivative of u(t) does not contain second derivatives of the

yj.

Equations (13) and (14) yield

u′′ = y′1(t)u′1(t) + y′2(t)u′2(t) + y1(t)u′′1(t) + y2(t)u′′2(t). (15)

Inserting (13), (14) and (15) in (1), we obtain

y1(u′′1 + a1u
′
1 + a0u1) + y2(u′′2 + a1u

′
2 + a0u2) + u′1y

′
1 + u′2y

′
2 = F (t). (16)

The coefficients of y1 and y2 in this equation are zero because u1 and u2 are solutions of the

homogeneous equation.

Thus we have obtained

u′1y
′
1 + u′2y

′
2 = F (t). (17)
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Equations (14) and (17) are two first-order ODEs for the two unknown functions y1 and y2.

We get  y′1 = − u2F
W (u1,u2)

,

y′2 = u1F
W (u1,u2)

,
(18)

after some algebra.

The right hand side (RHS) of these equations are known functions of t and therefore we can

find y1 and y2 by integration.

Inserting the result in (12), we obtain

u(t) =

[
c1 −

∫ t

t0

u2(s)F (s)

W (u1, u2)(s)
ds

]
u1(t) +

[
c2 +

∫ t

t0

u1(s)F (s)

W (u1, u2)(s)
ds

]
u2(t), (19)

which is the general solution of (1).

Let us check (19) for Example 1.

We have F = 1, u1 = e−t, u2 = e−2t and W (u1, u2) = −e−3t according to (10).

Then (18) is  y′1 = − e−2t

−e−3t = et,

y′2 = e−t

−e−3t = −e2t.
(20)

Then y1 = et and y2 = −e2t/2.

The particular solution is up = y1u1 + y2u2 = 1 − 1/2 = 1/2, the same one we got by

inspection.

C. Method of undetermined coefficients

This method is really organized guesswork, but it is faster than variation of parameters when

it works. It is applicable to second or higher order ODEs with constant coefficients when the

source term is an additive or multiplicative combination of et, sin t, cos t and polynomials

in t, or equidimensional equations where F (t) is a polynomial in t.

1. Linear ODEs with constant coefficients

The idea is to try a particular solution with undetermined parameters of the same form as

the source term F (t).
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We illustrate the method by a few examples:

Example 2.

(a) To solve u′′+u = et sin t, we try a particular solution of the form up = aet sin t+ bet cos t

and determine the undetermined coefficients a and b by substituting into the ODE.

Result: u′′p + up = et[(a− 2b) sin t+ (2a+ b) cos t] = et sin t.

This implies a− 2bb = 1 and 2a+ b = 0, from which a = 1/5, b = −2/5.

(b) To solve u′′−u = et, we cannot try up = aet because et is a solution of the homogeneous

ODE.

We try instead up = atet that gives u′′p − up = 2aet = et, hence a = 1/2.

Thus in the similar example u′′ + u = cos t, we try up = at sin t, thereby obtaining again

a = 1/2.

(c) To solve u′′ + u = t3 − 2t, we try up = at3 + bt2 + ct + d, thereby getting u′′p + up =

at3 + bt2 + (c+ 6a)t+ d+ 2b = t3 − 2t, so that a = 1, b = d = 0, c = −8.

Example 3.

Consider u′′ + 2u′ + u = e−t.

A particular solution of the form up = aet does not work because e−t is a solution of the

homogeneous ODE.

What about up = ate−t?.

It turns out this is also a solution of the homogeneous equation.

Let us define Lu = u′′ + 2u′ + u. We have L(te−t) = te−t − 2e−t + 2e−t − 2te−t + te−t = 0.

What is going on? Leλt = (λ2 + 2λ + 1)eλt = (λ + 1)2eλt, and we find that there is

only one solution λ = −1 of the equation (λ + 1)2 = 0. When we find a double zero of the

characteristic polynomial, then the two independent solutions of the homogeneous ODE are

eλt and teλt.

This is a general fact, as we will show after we finish this example. Anyway, in this case, we

have to try at2e−t as a solution:

L(at2e−t) = (2a+ at2 − 4at+ 4at− 2at2 + at2)e−t = 2ae−t

and therefore a = 1/2.
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The general solution of u′′ + 2u′ + u = e−t is u(t) = (1
2
t2 + c1t+ c2)e−t.

To find our what happens when λ = λ0 is a double zero of the characteristic

polynomial, we consider the operator L = (d/dt− λ0)2.

We know that eλ0t is a solution, so we try u = v(t)eλ0t.

We find

Lu =

(
d

dt
− λ0

)
(v′eλ0t) = v′′eλ0t,

and therefore L(veλ0t) = 0 implies v′′ = 0, so that v′ = c and v = ct+ d.

Then u = veλ0t = (ct+d)eλ0t which is the general solution of the homogeneous ODE Lu = 0.

2. Linear ODEs with constant coefficients

Consider the nth-order homogeneous linear ODE:

u(n) + an−1u
(n−1) + . . .+ a0u = 0, (21)

which can be written as

pn(D)u ≡ [Dn + an−1D
n−1 + . . .+ a0]u = 0, (22)

where D = d/dt and pn(x) = xn + an−1x
n−1 + . . .+ a1x+ a0 is a polynomial of degree n.

We can factorize the polynomial using its n roots (real or complex) as

pn(x) = (x− α1) . . . (x− αn).

Then (22) can be written as

(D − α1) . . . (D − αn)u = 0. (23)

If all roots αj are different and real, commutativity of the factors in (23) implies that u

must satisfy (D− αj)u = 0 for each j. This means u′ = αju whose solution is u(t) = cje
αjt.

The general solution is thus u(t) =
∑n

j=1 cje
αjt.

If αj is complex, say for j = 1 with α1 = µ + iν, then there is another root which is

its complex conjugate, so that we shall have two solutions e(µ±iν)t = eµt(cos νt ± i sin νt).

This pair of complex conjugate roots will contribute eµt(c1 cos νt + c2 sin νt) to the general

solution of the ODE.

What happens if there are multiple roots? Let α be a root with multiplicity l. Then
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pn(D) will contain a factor (D − α)l in its factorization. The equation (D − α)lu = 0

has one obvious solution u = eαt. We seek its other solutions as u = eαtv(t). We have

(D − α)eαtv = eαtv′, and therefore 0 = (D − α)lu = eαtDlv, and we get v(l) = 0. This

implies that v(t) = c0 + c1t+ . . . cl−1t
l−1 (polynomial of degree (l − 1)) and therefore

u(t) = (c0 + c1t+ . . . cl−1t
l−1)eαt + . . . if α is real, and

u(t) = (c0 + c1t+ . . . cl−1t
l−1)eµt cos νt+ (d0 + d1t+ . . . dl−1t

l−1)eµt sin νt+ . . . , (24)

if α = µ+ iν and its complex conjugate have multiplicity l.

In the case of the inhomogeneous ODE and distinct real roots αj, we can formally

write the solution as

u =
1

pn(D)
F (t) =

1∏n
j=1(D − αj)

F (t) =
n∑
j=1

Aj
D − αj

F (t) =
n∑
j=1

Aj

∫ t

t0

eαj(t−s)F (s)ds. (25)

Each (D−αj)−1F (t) is the solution of the first order inhomogeneous ODE (D−αj)w = F (t),

so that (D − αj)−1F (t) =
∫ t
t0
eαj(t−s)F (s)ds, as written above.

The cases of complex and multiple roots are left for the reader to do.

3. Equidimensional ODEs

Equidimensional (or Euler) linear ODEs are so named because they are invariant under

the scale change t→ at.

They have the form:

dnu

dtn
+
an−1

t

dn−1u

dtn−1
+ . . .+

a1

tn−1

du

dt
+
a0

tn
u = F (t). (26)

Let us consider the homogeneous case first. The homogeneous equidimensional ODE can be

transformed into a constant-coefficient ODE by changing variables:

t = ex, t
d

dt
=

d

dx
. (27)

Alternatively, they can be solved by direct substitution u = tλ in (26) with F = 0:

[λ(λ− 1) . . . (λ− n+ 1) + an−1λ(λ− 1) . . . (λ− n+ 2) + . . .+ a1λ+ a0]tλ−n = 0. (28)

As in the case of the constant coefficient ODE, λ is one of the roots of the resulting polyno-

mial.
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Example 4.

Inserting u = tλ in u′′ + u′/t − u/t2 = 0, we find λ(λ − 1) + λ − 1 = 0. Then λ2 = 1 and

λ = ±1.

The general solution of this homogeneous ODE is u(t) = c1t+ c2/t.

The same results are obtained after changing variables t = ex or x = ln t. du/dt =

t−1du/dx, d2u/dt2 = (d/dt)[t−1du/dx] = −t−2du/dx + t−2d2u/dx2. Then t2u′′ + tu′ − u =

d2u/dx2 − du/dx + du/dx − u = d2u/dx2 − u, and the equation d2u/dx2 − u = 0 has the

solutions u = c1e
x + c2e

−x which becomes u = c1t+ c2/t once we go back to the variable t.

Example 5.

The same procedure applied to the equation u′′+u/(4t2) = 0 gives λ(λ−1)+1/4 = 0 which

is (λ− 1/2)2 = 0. In this case λ = 1/2 is a double root.

One of the solutions has the form u1 = t1/2 but, what is the other one?

When we know one solution u1(t) of a higher order linear homogeneous ODE, the change

u = u1v gives a simpler first order ODE for v′:

u′′ − u

4t2
= v′′u1 + 2v′u′1 + vu′′1 −

vu1

4t2
= 0.

The two last terms of this equation cancel and therefore we get a first order linear ODE for

z = v′: u1z
′+2u′1z = 0. Multiplying this by u1 we have u2

1z
′+z(u2

1)′ = 0, which gives u2
1z = c.

Then we have z = v′ = c/u2
1 = c/t. Integrating again, we find v = c ln t. Then the other

solution is u = u1v = t1/2 ln t, and the general solution of the ODE is u(t) = c1t
1/2+c2t

1/2 ln t

The same result could be obtained by means of the change of variable x = et.

Example 6.

(a) To solve u′′ − u/t2 = t4 + t3, we guess a particular polynomial solution up = at6 + bt5.

Then u′′p − up/t2 = (30a− a)t4 + (20b− b)t3 = t4 + t3. We get a = 1/29 and b = 1/19.

(b) To solve u′′ + tu′ + 2u = 1, we guess up = a which gives a = 1/2, whereas to solve

u′′ + tu′ + 2u = t4, we guess up = at4 + bt2 + c, so that u′′p + tu′p + 2up = (4a + 2a)t4 +

(12a+ 2b+ 2b)t2 + (2b+ 2c) = t4 and we find 6a = 1, 12a+ 4b = 0, c = −b. Thus a = 1/6,

b = −1/2, c = 1/2; up = 1
6
t4 − 1

2
t2 + 1

2
.
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Example 7.

To solve the ODE t2u′′ + u/4 = t1/2, we try up = at1/2(ln t)2. We get a = 1/2. The reason

is that the homogeneous ODE is equidimensional with a double zero λ = 1/2 so that both

t1/2 and t1/2 ln t are solutions of the homogeneous ODE.

The proposed guess solution increases in one the degree of the polynomial in ln t multiplying

t1/2.

D. Reduction of order

When we know a solution of a linear ODE (homogeneous or not), we can reduce its order

by factoring off this solution.

Let u1(t) be a solution of Lu = 0. Then we seek further linearly independent solutions of

the form

u(t) = u1(t)v(t). (29)

Substituting this expression for u(t) into Lu = 0 gives a new equation for v of the form

Mv = 0 which does not have a term of the form a0(t)v.

Thus Mv = 0 is a linear homogeneous ODE of order (n− 1) for w(t) = v′(t) if Lu = 0 is of

order n.

We have used reduction of order in the examples of the method of undetermined coefficients.

Example 8.

We observe that the sum of the coefficients of the ODE u′′ − u′(1 + t)/t+ u/t = 0 is 0.

It follows that one solution is u = et. Then we try u = etv and get [v′′+2v′−v′(1+t)/t]et = 0

which gives v′′ + (1− 1/t)v′ = 0. Then z′/z = −1 + 1/t for z = v′ and ln z = ln t− t + ln c

which gives z = v′ = te−t.

One more integration yields v = (1 + t)e−t, and the other solution of the original ODE is

u = 1 + t.

The general solution is a linear combination: u(t) = c1(1 + t) + c2e
t.

Example 9.

To reduce the order of the inhomogeneous ODE u′′ − u′(1 + t)/t + u/t = tet, we substitute
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u = etv as before. We get v′′+ (1−1/t)v′ = t, and therefore z′+ (1−1/t)z = t. Multiplying

this ODE by the integrating factor et/t, we get (etz/t)′ = et, therefore etz/t = et. Then

z = v′ = t and v = t2/2.

We have found the particular solution up = t2et/2, so that the general solution is u =

1
2
t2et + c1e

t + c2(1 + t).

II. SUPLEMENTARY MATERIAL: LINEAR OSCILLATOR AND RESONANCE

A. Unforced oscillator

Let us consider a damped pendulum. The force acting on its mass is −mg sin θ − γθ̇,

where θ̇ = dθ/dt and γ is the damping coefficient. The acceleration is mlθ̈, where l is the

pendulum length.

Newton’s second law then yields the equation

θ̈ +
γ

ml
θ̇ +

g

l
sin θ = 0. (30)

If we are interested in small oscillations about the equilibrium θ = 0, then we can approxi-

mate sin θ ≈ θ and (30) becomes

θ̈ +
γ

ml
θ̇ +

g

l
θ = 0. (31)

As we shall see below, ω0 =
√
g/l is the natural frequency of the harmonic oscillator

in (31).

It is convenient to render time dimensionless by defining a new time t̃ = ω0t.

Then (31) becomes

d2θ

dt̃2
+ 2β

dθ

dt̃
+ θ = 0, (32)

β =
γ

2m
√
gl
, (33)

where β > 0 is a dimensionless parameter.

From now on, we shall study (32) omitting the tilde over the nondimensional time. To

recover the dimensional time, we replace ω0t instead of t in the resulting formulas.

The solution of (32) is found by inserting θ = eλt in it, thereby obtaining

λ2 + 2βλ+ 1 = 0, (34)
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whose solutions are

λ = −β ±
√
β2 − 1. (35)

We have three possible cases:

(i) Overdamped oscillator: β > 1,

(ii) damped oscillator: β < 1,

(iii) undamped oscillator: β = 0.

1. Overdamped oscillator β > 1

The two solutions (35) are both real and negative.

The general solution of the ODE (32) is

θ(t) = ae−(β+
√
β2−1)t + be−(β−

√
β2−1)t. (36)

For any initial condition, θ → 0 as t→∞. Since β −
√
β2 − 1 < β +

√
β2 − 1, the second

term in (36) goes to 0 more slowly than the first one provided a and b are both different

from 0.

In the limiting case β = 1 both solutions in (35) are equal to −1.

The general solution is now

θ(t) = (a+ bt)e−t. (37)

2. Damped oscillator β < 1

Now the solutions (35) are complex conjugate of each other.

If we define Ω =
√

1− β2, λ = −β ± iΩ. Since e−βt±iΩt = e−βt[cos(Ωt)± i sin(Ωt)], we can

write the general solution of (32) as

θ(t) = e−βt[a cos(Ωt) + b sin(Ωt)] = ce−βt cos(Ωt+ φ), (38)

where a, b, c and φ are real numbers.

The solution (38) represents damped oscillations with frequency Ω, phase shift φ and

relaxation time 1/β.
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3. Undamped oscillator

For β = 0, the general solution of (32) as

θ(t) = a cos t+ b sin t = c cos(t+ φ). (39)

These are undamped oscillations of amplitude c, unit frequency and period 2π.

B. Resonance

Let us assume now that there is a force acting periodically on the oscillator with frequency

ω (we continue using nondimensional units).

Instead of (32), we have now

d2θ

dt2
+ 2β

dθ

dt
+ θ = cos(ωt). (40)

We can write the coefficient of cos(ωt) in (40) as 1 without losing generality. Using the

method of undetermined coefficients, we look for a particular solution

θp = a cos(ωt) + b sin(ωt), (41)

which inserted in (40) yields

[(1− ω2)a+ 2βωb] cos(ωt) + [(1− ω2)b− 2βωa] sin(ωt) = cos(ωt). (42)

Provided ω2 6= 1, we then find

a =
1− ω2

(1− ω)2 + 4β2ω2
=

cosϕ√
(1− ω)2 + 4β2ω2

, b =
2βω

(1− ω2)2 + 4β2ω2
=

sinϕ√
(1− ω2)2 + 4β2ω2

.(43)

Inserting this in (41), we obtain

θp =
cos(ωt− ϕ)√

(1− ω2)2 + 4β2ω2
. (44)

The same result is obtained by taking the real part of the solution Aeiωt, with A =

e−iϕ/
√

(1− ω2)2 + 4β2ω2 of (40) with right hand side eiωt.

Therefore the response of the oscillator to a harmonic force is harmonic with an ampli-

tude 1/
√

(1− ω2)2 + 4β2ω2, the same frequency and a phase shift ϕ given by (43).
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The amplitude has a maximum value 1/(2β) for ω2 = 1, which becomes infinite in the un-

damped case β = 0. What happens then?

Clearly, for ω = 1 and β = 0, we have to solve the ODE θ̈ + θ = cos t and cos t is a solution

of the corresponding homogeneous ODE.

According to the method of undetermined coefficients, we guess θp = at sin t, and ob-

tain a = 1/2 by insertion in the equation.

The amplitude of the oscillations described by this solution is t/2, which increases linearly

with time.

This phenomenon is called resonance between the frequency of the force, ω, and the nat-

ural frequency of the unforced oscillator, 1.

It is convenient to visualize the resonance phenomenon as ω → 1. For β = 0 and ω 6= 1, the

general solution is

θ(t) =
cos(ωt)

1− ω2
+ a cos t+ b sin t. (45)

If initially θ = 0 and θ̇ = 0, (45) becomes

θ(t) =
cos(ωt)− cos t

1− ω2
=

2 sin[(1− ω)t/2]

1− ω2
sin

(
ω + 1

2
t

)
. (46)

This is a “fast” oscillation of period P+ = 4π/(ω+ 1) modulated by a “slow” oscillation of

period P− = 4π/|1− ω| and “amplitude” 2 sin[(1−ω)t/2]
1−ω2 .

As ω → 1, this amplitude tends to its slope at the origin, that is, t/2 and (46) becomes the

resonant solution θ = (t/2) sin t.
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