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I. SYSTEMS OF FIRST ORDER ODES

This Lecture 3 deals with systems of first-order linear ODEs and related IVPs.

The general form of a system of n first-order ODEs is

du1

dt
= f1(u1, . . . , un, t),

. . .

dun
dt

= fn(u1, . . . , un, t). (1)

If the fj and all their first partial derivatives with respect to the uk are continuous functions in

a region R containing (u1(t0), . . . , un(t0)) and t0, the existence and uniqueness theorem

implies that there is a unique solution of (1) satisfying the initial condition on subregion

of R.

If the fj in (1) are independent of t, the ODE system is called autonomous, otherwise it

is non-autonomous.

Any nth-order non-autonomous system is equivalent to a (n+1)st-order autonomous system

given by (1) with the new unknown un+1 instead of t in the fj(u1, . . . , un, un+1) and the

additional ODE: dun+1/dt = 1.

The general form of a system of n first-order linear ODEs is

du1

dt
= a11(t)u1 + . . .+ a1n(t)un + F1(t),

. . .

dun
dt

= an1(t)u1 + . . .+ ann(t)un + Fn(t). (2)

Eq. (2) can be written as a vector ODE:

du

dt
= A(t)u+ F (t), (3)

u =


u1

. . .

un

 , A =


a11(t) . . . a1n(t)

. . .

an1(t) . . . ann(t)

, F (t) =


F1(t)

. . .

Fn(t)

. (4)

For a homogeneous system, F (t) = 0, the following Abel’s formula holds:

d

dt
W (u1, . . . , un) = TrA(t)W (u1, . . . , un), W (u1, . . . , un) = det(u1, . . . , un). (5)
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To prove this, we first define a fundamental matrix whose columns are n independent

solutions of the homogeneous system, Φ = (u1, . . . , un).

This matrix satisfies the equation: d
dt

Φ = AΦ.

Now we differentiate the identity ln det Φ = Tr lnΦ, with det Φ = W (u1, . . . , un), thereby

getting
1

W

d

dt
W = Tr

[
Φ−1 d

dt
Φ

]
= Tr[Φ−1AΦ] = Tr[AΦ Φ−1] = TrA,

which is Abel’s identity.

The formula ln(det Φ) = Tr(lnΦ) follows from the identities det(AB) = detA detB and

Tr(AB) = Tr(BA) valid for any matrices A and B. Defining A = R−1, B = ΦR, R

the matrix of eigenvectors of Φ, and D = R−1ΦR, the diagonalized matrix with the

eigenvalues of Φ, we can show that ln(det Φ) = ln Πn
j=1λi =

∑n
i=1 lnλi = Tr(lnΦ), where

λi are the eigenvalues of Φ.

A. Autonomous linear homogeneous system

The general form of an autonomous linear homogeneous system is

du1

dt
= a11u1 + . . .+ a1nun,

. . .

dun
dt

= an1u1 + . . .+ annun. (6)

Equation (6) can be written as a vector ODE:

du

dt
= Au, (7)

u =


u1

. . .

un

 , A =


a11 . . . a1n

. . .

an1 . . . ann

 . (8)

We seek a solution of this equation as u(t) = Ueλt which, inserted in (7) yields the eigen-

value problem:

AU = λU. (9)
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If the matrix A has n different eigenvalues λj with eigenvectors Φj, j = 1, . . . , n, the

superposition principle implies that the general solution of (7) is the linear combination

u(t) =
n∑
j=1

cje
λjtΦj, (10)

where the cj are arbitrary.

B. Two-dimensional linear homogeneous system

In this case, the coefficient matrix is

A =

 a b

c d

 , with τ =TrA = a+ d, ∆ = detA = ad− bc. (11)

The eigenvalue problem leads to the equation

λ2 − τλ+ ∆ = 0 =⇒ λj =
τ + (−1)j

√
τ 2 − 4∆

2
, j = 1, 2, (12)

λ1 + λ2 = τ, λ1λ2 = ∆. (13)

There several cases to consider:

1. Case: λ1 < 0 < λ2, equivalently, ∆ < 0.

Let Φj be the eigenvector corresponding to the eigenvalue λj. The general solution (10)

(with n = 2) becomes c2Φ2e
λ2t as t → ∞ provided c2 6= 0 and it becomes c1Φ2e

λ1t as

t→ −∞ provided c1 6= 0.

The special solutions with c1 = 0, c2 6= 0 tend to (0, 0) as t → −∞ and escape away from

the origin as t → ∞. Similarly, solutions with c2 = 0, c1 6= 0 tend to (0, 0) as t → ∞ and

escape away from the origin as t→ −∞.

These special solutions are called separatrices and they are straight lines with slopes

u2/u1 = Φ22/Φ21 (c1 = 0) and u2/u1 = Φ12/Φ11 (c2 = 0). In this case, the origin is a

solution corresponding to c1 = c2 = 0 called a saddle point.

In the phase plane (u1, u2), the solutions (10) (with n = 2 and for different c1 and c2) are

curves called trajectories.

Except for the separatrices, all trajectories are hyperbolas whose asymptotes are the sepa-

ratrices.
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FIG. 1: Phase portrait of a saddle point.

Note that in any neighborhood of the origin there are points such that the trajectories pass-

ing through them leave the neighborhood after some positive time. This means that the

origin is an unstable fixed point (constant solutions of the system of ODEs are called

fixed points: for (7) the origin is the only fixed point). A picture comprising the saddle

point, the separatrices and a few trajectories is a phase portrait. See figure 1.

2. Case: τ2 > 4∆ > 0.

In this case, the eigenvalues are real and they are both positive or both negative.

Consider first that λ1 < λ2 < 0. Then eλ1t � eλ2t for sufficiently large t > 0. This means

that u(t) ∼ c2Φ2e
λt if c2 6= 0. Eventually all trajectories tend to the origin as t → ∞

and, for c2 6= 0, they approach the straight line u2/u1 = Φ22/Φ21 as t → ∞. This line is

the normal direction of approach to the origin (slow eigendirection). For special initial

conditions such that c2 = 0, the trajectories are straight lines u2/u1 = Φ12/Φ11 entering the

origin as t → ∞ and constitute the exceptional direction of approach to the origin (fast

eigendirection).

Note that, as t→ −∞, all trajectories escape from the origin and approach the exceptional

direction. All points in a neighborhood of the origin tend to it as t → ∞. The origin is

called an asymptotically stable node. See Fig. 2.
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FIG. 2: Phase portrait of an asymptotically stable node.

The case λ1 > λ2 > 0 is obtained from the previous one by replacing −t instead of t.

All trajectories escape the origin which is an unstable node.

3. Case: 0 < τ2 < 4∆.

The eigenvalues are complex: λ = τ/2 + iΩ and λ = τ/2− iΩ, where Ω =
√

∆− τ 2/4, with

associated complex eigenvectors Φ and Φ.

The general solution of (7) (with n = 2) is now

u(t) = eτt/2Re
(
cΦeiΩt

)
, (14)

where c is an arbitrary complex constant.

If the eigenvalues have negative real parts (τ < 0), all trajectories are spirals that tend to

the origin as t→∞.

The origin is an asymptotically stable spiral point (also called stable focus); see Fig.

3.

If the eigenvalues have positive real parts (τ > 0), all trajectories escape from the origin as

time increases (they tend to the origin as t→ −∞) and the origin is an unstable focus or

spiral point.
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FIG. 3: Phase portrait of (a) center, (b) stable spiral point.

4. Case: τ = 0, ∆ > 0.

The eigenvalues are pure imaginary, all trajectories are closed (ellipses or circles) and the

origin is a center, also seen in Fig. 3.

A center is stable but not asymptotically stable because the trajectories do not tend to it

as t→∞.

If c = ρeiα and the eigenvector is

Φ =

 1

reiθ

 , (15)

the general solution (14) is

u(t) = ρ

 cos(Ωt+ α)

r cos(Ωt+ α + θ)

 . (16)

A little exercise in trigonometry shows that the ellipses corresponding to (16) are

u2
1

ρ2
+

(
u1 cot θ

ρ
− u2

rρ sin θ

)2

= 1. (17)

7



fa
st

slo
w

(a) node (b) degenerate node

FIG. 4: Borderline cases: degenerate node.

5. Borderline cases: τ2 − 4∆ = 0.

In these cases, borderline between nodes and spiral points, the eigenvalue λ = τ/2 has

multiplicity two.

There are two possibilities, either there is a single eigenvector associated to the eigenvalue

or there are two independent eigenvectors.

An example of the first case is the coefficient matrix

A =

 λ b

0 λ

.
There is a single eigendirection in which trajectories approach a stable degenerate node

and trajectories try to wind about the fixed point, but they are parallel to the eigendirection

both as t → ∞ and as t → −∞. See Figure 4; the idea is that the degenerate node

corresponds to a node in which the fast and slow eigendirections approach each other and

become the same.

We can use the method of undetermined coefficients to find the solution:

u(t) = (V 1 + V 2t)e
τt/2.

Inserting this into (7), we find

τ

2
(V 1 + V 2t)e

τt/2 + V 2e
τt/2 = A(V 1 + V 2t)e

τt/2,
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from which

AV 2 =
τ

2
V 2,

(
A− τ

2

)
V 1 = V 2. (18)

Then V 2 is the eigenvector corresponding to the double eigenvalue λ = τ/2 and V 1 is a

generalized eigenvector corresponding to the same eigenvalue.

Another method to determine the other independent solution is to use Abel’s formula.

Let u1 = V 1e
τt/2 be the solution corresponding to the double eigenvalue τ/2.

By Abel’s formula, the Wronskian with the other independent solution is

W (V 1e
τt/2, u(t)) = eτt. Then V11u2(t) − V12u1(t) = eτt/2 is a relation between the

components of u.

Let us assume that V11 6= 0. Inserting u2(t) = [eτt/2 +V12u1(t)]/V11 in the ODE for u1(t), we

obtain a first-order linear ODE for u1 which, when solved, provides the other independent

solution u.

Example 1.

The coefficient matrix in the following system of ODEs has trace τ = 4 and a double

eigenvalue λ = 2,

u′ =

 1 −1

1 3

u.
One solution is

u1(t) =

 1

−1

e2t.

From Abel’s formula ∣∣∣∣∣∣ e
2t u

−e2t v

∣∣∣∣∣∣= e4t =⇒ u+ v = e2t.

The first ODE of the system is u′ = u− v = 2u− e2t.

This yields (e−2tu)′ = −1 and therefore u = −te2t, v = (t + 1)e2t (we have ignored an

arbitrary constant).

The same solutions are obtained by the method of undetermined coefficients.

The diagonal matrix

A =

 λ 0

0 λ

.
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is an example of the second case.

Any direction is an eigendirection and we have a star node, in which initial points approach

the origin (or escape from it) along the straight line joining them to the origin.

6. Classification of fixed points.

Figure 5 visualizes the classification of fixed points depending on the values of trace and

determinant of the coefficient matrix.

We have used the formulas

λ1,2 =
1

2

(
τ ±
√
τ 2 − 4∆

)
, λ1 + λ2 = τ. λ1λ2 = ∆.

-If ∆ < 0, one eigenvalue is positive and the other negative, the fixed point is a saddle.

-If ∆ > 0, we can have nodes for τ 2 − 4∆ > 0 (stable for τ < 0, unstable for τ > 0),

spiral points for τ 2 − 4∆ < 0 and τ 6= 0 (stable for τ < 0, unstable for τ > 0) and

centers for τ = 0.

For τ 2 − 4∆ = 0, we have the borderline cases of degenerate nodes or stars.

-If ∆ = 0, at least one of the eigenvalues is zero and this means that the corresponding

eigenvector defines a straight line all whose points are fixed points. This is a line of non-

isolated fixed points.

II. INHOMOGENEOUS LINEAR SYSTEMS. VARIATION OF PARAMETERS.

UNDETERMINED COEFFICIENTS.

Let us consider the general nth-order system

du

dt
− A(t)u = F (t), (19)

where F and u are n-dimensional column vectors and the coefficient matrix is time depen-

dent.

Assume that we know n linearly independent solutions ψ
j
(t) (j = 1, . . . , n) of the homoge-

neous system with F (t) = 0.
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FIG. 5: Classification of fixed points depending on the values of τ and ∆.

The variation of parameters solution is

u(t) =
n∑
j=1

yj(t)ψj(t) ≡ (ψ
1
(t), . . . , ψ

n
(t))


y1(t)

. . .

yn(t)

 ≡ ψ(t)y(t). (20)

Substituting (20) into (19), we find

n∑
j=1

dyj
dt
ψ
j
(t) = F (t). (21)

This equation can be written in matrix form as

ψ
d

dt
y = F (t). (22)

Since the ψ
j
(t) are independent, det(ψ) 6= 0, and there exist the inverse matrix ψ−1.

Then (22) yields

y(t) =

∫ t

t0

ψ−1(s)F (s)ds, (23)

u(t) = ψ(t)

∫ t

t0

ψ−1(s)F (s)ds. (24)
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Is this solution unique?

The ψ
j
(t) form a set of independent solutions of the homogeneous problem. Any other set

of independent solutions, Ψj(t), j = 1, . . . , n will be related by Ψ(t) = ψ(t)C, where C is

an invertible matrix of constant coefficients.

Then in (23), Ψ(t)Ψ−1(s) = ψ(t)CC−1ψ(s) = ψ(t)ψ(s), and (23) with Ψ instead of ψ

produces the same formula.

Example 2.

Let

F (t) =

 et

0

, A =

 −1 2

3 −2

 , with τ = −3, ∆ = −4. (25)

The eigenvalues of A are (−3± 5)/2, i.e., 1 and -4.

The eigenvector corresponding to λ1 = −4 is Φ1 = (2,−3) and that corresponding to λ2 = 1

is Φ2 = (1, 1).

The solution matrix is

ψ(t) =

 2e−4t et

−3e−4t et

 , and its inverse is ψ−1(t) =
1

5

 e4t −e4t

3e−t 2e−t

 . (26)

For F (t) as in (25), we find

dy

dt
= ψ−1F =

1

5

 e5t

3

 =⇒ y =
1

5

 (e5t − 1)/5

3t

, (27)

which satisfies y(0) = 0 and yields the particular solution

u(t) = ψ y =
et

5

 2
5
(1− e−5t) + 3t

−3
5
(1− e−5t) + 3t

. (28)

We can check this particular solution with the method of undetermined coefficients.

Since one of the solutions of the homogeneous system is proportional to et, we insert

u(t) = (b+ ct)et, (29)

into (19) thereby getting

b+ c+ ct = A(b+ ct) +

 1

0

.
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Then c is an eigenvector corresponding to the eigenvalue 1 so that

c = µ

 1

1

, (A− I)b = c−

 1

0

. (30)

The latter equation gives

2(c2 − c1) = µ− 1, −3(c2 − c1) = µ =⇒ −2

3
=
µ− 1

µ
=⇒ µ =

3

5
, (31)

and c1 − c2 = 1/5.

Then (29) becomes

u(t) = et

 3t
5

+ c2 + 1
5

3t
5

+ c2

,
and the general solution of the system is

u(t) = et

 3t
5

+ 1
5

3t
5

+ c2

 et

et

+ k1

 2e−4t

−3e−4t

, c2, k1 are arbitrary numbers. (32)

For c2 = −3/25 and k1 = −1/25, (32) becomes (28).

III. SUPPLEMENTARY MATERIAL: REDUCTION TO NORMAL MODES

A linear system with a constant coefficient matrix A can be reduced to a system of n

independent first-order linear ODEs provided A is diagonalizable, A = R−1DR, where D

is a diagonal matrix with nonzero entries d1,. . . , dn.

In this case, the change of variable u = Rv yields

d

dt
u(t) = R

d

dt
v = ARv + F (t) =⇒ d

dt
v = R−1ARv +R−1F (t) = D v +R−1F (t),

that is

d

dt
v(t) = D v +R−1F (t),

dvi
dt

= divi +
n∑
j=1

(R−1)ijFj(t), (33)

for i = 1, . . . , n.

The solutions are

vi(t) = cie
dit +

n∑
j=1

(R−1)ij

∫ t

0

edi(t−s)Fj(s) ds, (34)

ui(t) =
n∑
k=1

(R)ikcke
dkt +

n∑
j,k=1

(R)ik(R
−1)kj

∫ t

0

edk(t−s)Fj(s) ds. (35)
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Example 3.

Let us solve Example 2 by reduction to normal modes.

The transformation matrices are R = ψ(0) and R−1 = ψ−1(0), and the diagonal components

of the matrix D are the eigenvalues of A, d1 = −4, d2 = 1.

The components of the vector R−1F (t) are 1
5
et and 3

5
et.

Then (33) gives the normal mode equations

dv1

dt
= −4v1 +

1

5
et,

dv2

dt
= v2 +

3

5
et.

Solving these equations, we find the normal modes

v1 = e−4tc1 +
1

25
et,

dv2

dt
=

(
c2 +

3t

5

)
et,

thereby yielding

u1 = 2e−4tc1 + etc2 +
et

5

(
2

5
+ 3t

)
, u2 = −3c1e

−4t +

(
c2 +

3t

5
− 3

25

)
et. (36)

With c1 = − 1
25

, c2 = 0, Eq. (36) becomes (28).
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