Applied Differential Calculus Lecture 3: Systems of differential equations

Authors:
Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin, Rocío Vega

Bachelor's Degree in Computer Science and Engineering and
Dual Bachelor in Computer Science and Engineering and Business Administration.

Outline

- Systems of linear first order ODEs.
- Autonomous planar linear homogeneous systems.
- Inhomogeneous linear systems.

General properties

- Existence, uniqueness, extension and continuity: $f(t, x), \partial f / \partial x_{j}$, continuous on a box B in $n+1$ space and $\left(t_{0}, x^{0}\right) \in B$. Then the IVP:

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x^{0}
$$

has a unique solution $x(t)$ on some t-interval containing t_{0}. We can extend the solution to any interval containing t_{0} for which the time-state curve lies in B and extends to the boundary of B as t tends to either endpoint of the interval. The solution is continuous in the data x^{0} and f.

- Autonomous systems: $f(x), \partial f / \partial x_{j}$, continuous on a box S in n dimensional phase space and $\left(x^{0}\right) \in S$. Then the IVP:

$$
x^{\prime}=f(x), \quad x\left(t_{0}\right)=x^{0}
$$

has a unique solution $x(t)$ on some t-interval containing t_{0}. We can extend the solution to any interval containing t_{0} for which the state curve lies in S. The solution is continuous in the data x^{0} and f.

Linear systems

Assuming $a_{m n}(t), F_{n}(t)$ continuous on $\left|t-t_{0}\right| \leq \delta$,

$$
\begin{aligned}
\frac{d u_{1}}{d t}= & a_{11}(t) u_{1}+\ldots+a_{1 n}(t) u_{n}+F_{1}(t) \\
& \ldots \\
\frac{d u_{n}}{d t}= & a_{n 1}(t) u_{1}+\ldots+a_{n n}(t) u_{n}+F_{n}(t)
\end{aligned}
$$

IVP with $\underline{u}\left(t_{0}\right)=\underline{u}_{0}$ has a unique solution. Equivalently, as a vector ODE:

$$
\begin{aligned}
& \frac{d \underline{u}}{d t}=\underline{\underline{A}}(t) \underline{u}+\underline{F}(t) \\
& \underline{u}=\left(\begin{array}{c}
u_{1} \\
\ldots \\
u_{n}
\end{array}\right), \quad \underline{=}=\left(\begin{array}{lll}
a_{11}(t) & \ldots & a_{1 n}(t) \\
& \ldots & \\
a_{n 1}(t) & \ldots & a_{n n}(t)
\end{array}\right), \quad \underline{F}(t)=\left(\begin{array}{c}
F_{1}(t) \\
\ldots \\
F_{n}(t)
\end{array}\right) .
\end{aligned}
$$

Abel's formula. Autonomous homogeneous linear systems.

Wronskian:

$$
W\left(\underline{u}_{1}, \ldots, \underline{u}_{n}\right)=\operatorname{det}(\underline{\Phi}), \quad \underline{\underline{\Phi}}(t)=\left(\underline{u}_{1}(t), \ldots, \underline{u}_{n}(t)\right),
$$

$\Phi(t)$ fundamental matrix of independent solutions. Abel's formula:

$$
\frac{d}{d t} W\left(\underline{u}_{1}, \ldots, \underline{u}_{n}\right)=\operatorname{Tr} \underline{\underline{A}}(t) W\left(\underline{u}_{1}, \ldots, \underline{u}_{n}\right)
$$

Autonomous homogeneous linear system: $\underline{\underline{\dot{u}}}(t)=\underline{\underline{A}} \underline{u}(t)$.
Letting $\underline{u}(t)=\underline{U} e^{\lambda t}$, get eigenvalue problem:

$$
\underline{\underline{A}} \underline{U}=\lambda \underline{U} .
$$

If all eigenvalues λ_{j} are different,

$$
\underline{u}(t)=\sum_{j=1}^{n} c_{j} e^{\lambda_{j} t} \Phi_{j}, \quad \Phi_{j} \text { eigenvectors, } c_{j} \text { are constant. }
$$

Two dimensional (planar) systems

$$
\underline{\underline{A}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \text { with } \tau=\operatorname{Tr} \underline{\underline{A}}=a+d, \quad \Delta=\operatorname{det} \underline{\underline{A}}=a d-b c
$$

Characteristic equation for eigenvalues $\left(\lambda_{1}+\lambda_{2}=\tau, \lambda_{1} \lambda_{2}=\Delta\right)$

$$
\lambda^{2}-\tau \lambda+\Delta=0 \Longrightarrow \lambda_{j}=\frac{\tau+(-1)^{j} \sqrt{\tau^{2}-4 \Delta}}{2}, \quad j=1,2 .
$$

Saddle point

$\Delta<0 \Longrightarrow \lambda_{1}<0<\lambda_{2}$

Asymptotically stable node

$$
\tau<0, \Delta>0, \tau^{2}-4 \Delta>0 \Longrightarrow \lambda_{1}<\lambda_{2}<0 .
$$

Centers or asymptotically stable spiral points

$$
\tau \leq 0, \Delta>0, \tau^{2}-4 \Delta=-4 \Omega^{2}<0 \Longrightarrow \lambda_{j}=\frac{\tau}{2} \pm i \Omega .
$$

(a) center

(b) spiral

Borderline cases

$$
\tau^{2}-4 \Delta=0
$$

- $\underline{\underline{A}}=\frac{\tau}{2} \underline{\underline{I}}$, star point: all directions are eigendirections;
- otherwise degenerate node: only one eigendirection.

(a) star

(b) node

(c) degenerate node

Variation of parameters $\underline{\underline{\dot{ }}}=\underline{\underline{A}}(t) \underline{\underline{u}}+\underline{F}(t)$

Fundamental matrix $\underline{\underline{\Psi}}(t)=\left(\underline{\psi}_{1}(t), \ldots, \underline{\psi}_{n}(t)\right)$, s.t., $\underline{\underline{\dot{\Psi}}}(t)=\underline{\underline{A}}(t) \underline{\underline{\Psi}}(t)$. Then we insert a solution of the homogeneous system,

$$
\underline{u}(t)=\sum_{j=1}^{n} y_{j} \underline{\psi}_{j}(t)=\underline{\underline{\Psi}}(t) \underline{y}
$$

for $y_{j}=y_{j}(t)$ in the inhomogeneous system:

$$
\underline{\underline{\Psi}}(t) \underline{\dot{y}}(t)+\underline{\underline{\dot{\Psi}}}(t) \underline{\underline{y}}(t)-\underline{\underline{A}(t) \underline{\underline{\Psi}}(t) \underline{\underline{y}}(t)}=\underline{F}(t) \Longrightarrow \underline{\dot{y}}(t)=\underline{\underline{\Psi}}^{-1}(t) \underline{F}(t) .
$$

Integrating and substituting in $\underline{u}(t)$, we find the solution of the IVP $\underline{\dot{u}}(t)-\underline{\underline{A}}(t) \underline{u}(t)=\underline{F}(t), \underline{u}(0)=\underline{u}_{0}$:

$$
\underline{u}(t)=\underline{\underline{\Psi}}(t) \int_{0}^{t} \underline{\underline{\Psi}}^{-1}(s) \underline{F}(s) d s+\underline{\underline{\Psi}}(t) \underline{u}_{0}
$$

Example: $\underline{\underline{u}}=\underline{\underline{A u}}+\underline{F}$

$$
\underline{F}(t)=\binom{e^{t}}{0}, \quad \underline{\underline{A}}=\left(\begin{array}{cc}
-1 & 2 \tag{1}\\
3 & -2
\end{array}\right), \quad \text { with } \tau=-3, \quad \Delta=-4
$$

Eigenvalues of $\underline{\underline{A}}$ are $\lambda_{1}=-4$, with eigenvector $\underline{\psi}_{1}=(2,-3)$ and $\lambda_{2}=1$ with $\underline{\psi}_{2}=(1,1)$. The fundamental matrix is
$\underline{\underline{\Psi}}(t)=\left(\begin{array}{cc}2 e^{-4 t} & e^{t} \\ -3 e^{-4 t} & e^{t}\end{array}\right)$, and its inverse is $\quad \underline{\underline{\Psi}}^{-1}(t)=\frac{1}{5}\left(\begin{array}{cc}e^{4 t} & -e^{4 t} \\ 3 e^{-t} & 2 e^{-t}\end{array}\right)$
For $\underline{F}(t)$ as in (1), we find

$$
\begin{equation*}
\frac{d \underline{y}}{d t}=\underline{\Psi}^{-1} \underline{F}=\frac{1}{5}\binom{e^{5 t}}{3} \Longrightarrow \underline{y}=\frac{1}{5}\binom{\left(e^{5 t}-1\right) / 5}{3 t}, \tag{3}
\end{equation*}
$$

which satisfies $\underline{y}(0)=\underline{0}$ and yields the particular solution

$$
\begin{equation*}
\underline{u}(t)=\underline{\underline{\psi}} \underline{y}=\frac{e^{t}}{5}\binom{\frac{2}{5}\left(1-e^{-5 t}\right)+3 t}{-\frac{3}{5}\left(1-e^{-5 t}\right)+3 t} . \tag{4}
\end{equation*}
$$

Undetermined coefficients for the example

We use $\underline{u}(t)=(\underline{b}+\underline{c} t) e^{t}$, because $\lambda_{2}=1$. We get

$$
(\underline{b}+\underline{c}+\underline{c} t) e^{\not t}=\underline{\underline{A}}(\underline{b}+\underline{c} t) e^{t}+\binom{1}{0} e^{t} .
$$

Thus $\underline{\underline{A c}}=\underline{c}$ (so $\underline{c}=\mu \underline{\psi}_{1}$ is the eigenvector corresponding to $\lambda_{2}=1$), and

$$
\underline{c}=\mu\binom{1}{1}, \quad\left(\underline{\underline{A}}-\underline{\underline{l}} \underline{\underline{b}}=\underline{c}-\binom{1}{0} .\right.
$$

The latter equation gives $2\left(c_{2}-c_{1}\right)=\mu-1,-3\left(c_{2}-c_{1}\right)=\mu$. Then $-\frac{2}{3}=\frac{\mu-1}{\mu} \Longrightarrow \mu=\frac{3}{5}$ and $c_{1}-c_{2}=1 / 5$. Thus

$$
\underline{u}(t)=e^{t}\binom{\frac{3 t}{5}+c_{2}+\frac{1}{5}}{\frac{3 t}{5}+c_{2}},
$$

and the general solution of the system is ($c_{2}=-\frac{3}{5}, k_{1}=-\frac{1}{5}$ previously)
$\underline{u}(t)=e^{t}\left(\begin{array}{c}\frac{3 t}{5}+\frac{1}{5} \\ \left.\begin{array}{c}\frac{3 t}{5}\end{array}\right)+c_{2}\binom{e^{t}}{e^{t}}+k_{1}\binom{2 e^{-4 t}}{-3 e^{-4 t}}, c_{2}, k_{1} \text { arbitrary const. } . \text {. } \quad \text {. } \\ \end{array}\right.$

Supplementary material: Reduction to normal modes

Let $\underline{\underline{A}}=\underline{\underline{R}}^{-1} \underline{\underline{D}} \underline{\underline{R}}$, where $\underline{\underline{D}}$ is a diagonal matrix with entries d_{1}, \ldots, d_{n}. $\underline{u}=\underline{\underline{R}} \underline{v}$ yields
$\underline{\dot{u}}=\underline{\underline{R} \dot{v}}=\underline{\underline{A}} \underline{\underline{R}} \underline{v}+\underline{F}(t) \Longrightarrow \underline{\dot{v}}=\underline{\underline{R}}^{-1} \underline{\underline{A}} \underline{\underline{R}} \underline{v}+\underline{\underline{R}}^{-1} \underline{F}(t)=\underline{\underline{D}} \underline{v}+\underline{\underline{R}}^{-1} \underline{F}(t)$,
that is

$$
\dot{\underline{v}}(t)=\underline{\underline{D}} \underline{v}+\underline{\underline{R}}^{-1} \underline{F}(t), \quad \dot{\dot{v}}_{i}=d_{i} v_{i}+\sum_{j=1}^{n}\left(\underline{\underline{R}}^{-1}\right)_{i j} F_{j}(t)
$$

for $i=1, \ldots, n$. The solutions are

$$
\begin{align*}
& v_{i}(t)=c_{i} e^{d_{i} t}+\sum_{j=1}^{n}\left(\underline{R}^{-1}\right)_{i j} \int_{0}^{t} e^{d_{i}(t-s)} F_{j}(s) d s \tag{5}\\
& u_{i}(t)=\sum_{k=1}^{n}(\underline{\underline{R}})_{i k} c_{k} e^{d_{k} t}+\sum_{j, k=1}^{n}(\underline{\underline{R}})_{i k}\left(\underline{\underline{R}}^{-1}\right)_{k j} \int_{0}^{t} e^{d_{k}(t-s)} F_{j}(s) d s \tag{6}
\end{align*}
$$

Supplementary material: Reduction to normal modes for

 the exampleTransformation matrices: $\underline{\underline{R}}=\underline{\underline{\Psi}}(0)$ and $\underline{\underline{R}}^{-1}=\underline{\Psi}^{-1}(0)$, the diagonal components of \underline{D} are $d_{1}=-4, d_{2}=1$. The components of the vector $\underline{R}^{-1} \underline{F}(t)$ are $\frac{1}{5} e^{t}$ and $\frac{3}{5} e^{t}$. Then normal mode equations are

$$
\frac{d v_{1}}{d t}=-4 v_{1}+\frac{1}{5} e^{t}, \quad \frac{d v_{2}}{d t}=v_{2}+\frac{3}{5} e^{t} .
$$

Solving these equations, we find the normal modes

$$
\begin{gathered}
v_{1}=e^{-4 t} c_{1}+\frac{1}{25} e^{t}, \quad v_{2}=\left(c_{2}+\frac{3 t}{5}\right) e^{t}, \quad \text { thereby yielding } \\
u_{1}=2 e^{-4 t} c_{1}+e^{t} c_{2}+\frac{e^{t}}{5}\left(\frac{2}{5}+3 t\right), u_{2}=-3 c_{1} e^{-4 t}+\left(c_{2}+\frac{3 t}{5}-\frac{3}{25}\right) e^{t}
\end{gathered}
$$

With $c_{1}=-\frac{1}{25}, c_{2}=0$, this equation becomes (4).

