
Applied Differential Calculus
Lecture 3: Systems of differential equations

Authors:
Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin,
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Outline

Outline

Systems of linear first order ODEs.

Autonomous planar linear homogeneous systems.

Inhomogeneous linear systems.
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Linear systems

General properties

Existence, uniqueness, extension and continuity: f (t, x), ∂f /∂xj ,
continuous on a box B in n+ 1 space and (t0, x

0) ∈ B. Then the IVP:

x ′ = f (t, x), x(t0) = x0,

has a unique solution x(t) on some t-interval containing t0. We can
extend the solution to any interval containing t0 for which the
time-state curve lies in B and extends to the boundary of B as t
tends to either endpoint of the interval. The solution is continuous in
the data x0 and f .

Autonomous systems: f (x), ∂f /∂xj , continuous on a box S in n
dimensional phase space and (x0) ∈ S . Then the IVP:

x ′ = f (x), x(t0) = x0,

has a unique solution x(t) on some t-interval containing t0. We can
extend the solution to any interval containing t0 for which the state
curve lies in S . The solution is continuous in the data x0 and f .
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Linear systems

Linear systems

Assuming amn(t), Fn(t) continuous on |t − t0| ≤ δ,

du1

dt
= a11(t)u1 + . . .+ a1n(t)un + F1(t),

. . .
dun
dt

= an1(t)u1 + . . .+ ann(t)un + Fn(t),

IVP with u(t0) = u0 has a unique solution. Equivalently, as a vector ODE:

du

dt
= A(t) u + F (t),

u =

 u1

. . .
un

 , A =

 a11(t) . . . a1n(t)
. . .

an1(t) . . . ann(t)

, F (t) =

 F1(t)
. . .

Fn(t)

.
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Linear systems

Abel’s formula. Autonomous homogeneous linear systems.

Wronskian:

W (u1, . . . , un) = det(Φ), Φ(t) = (u1(t), . . . , un(t)),

Φ(t) fundamental matrix of independent solutions. Abel’s formula:

d

dt
W (u1, . . . , un) = TrA(t)W (u1, . . . , un).

Autonomous homogeneous linear system: u̇(t) = Au(t).

Letting u(t) = Ueλt , get eigenvalue problem:

AU = λU.

If all eigenvalues λj are different,

u(t) =
n∑

j=1

cje
λj tΦj , Φj eigenvectors, cj are constant.
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Autonomous planar linear homogeneous systems

Two dimensional (planar) systems

A =

(
a b
c d

)
, with τ =TrA = a + d , ∆ = detA = ad − bc.

Characteristic equation for eigenvalues (λ1 + λ2 = τ , λ1λ2 = ∆)

λ2 − τλ+ ∆ = 0 =⇒ λj =
τ + (−1)j

√
τ2 − 4∆

2
, j = 1, 2.

∆

τ

unstable nodes

stable nodes

centers

unstable spirals

stable spirals

τ2 − 4∆ = 0

saddle points

non-isolated
fixed points

stars, degen-
erate nodes
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Autonomous planar linear homogeneous systems

Saddle point

∆ < 0 =⇒ λ1 < 0 < λ2

x

y
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Autonomous planar linear homogeneous systems

Asymptotically stable node

τ < 0, ∆ > 0, τ2 − 4∆ > 0 =⇒ λ1 < λ2 < 0.

x

y

slo
w

eig
en

dire
ct

io
n

fast
eigendirection
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Autonomous planar linear homogeneous systems

Centers or asymptotically stable spiral points

τ ≤ 0, ∆ > 0, τ2 − 4∆ = −4Ω2 < 0 =⇒ λj = τ
2 ± iΩ.

x

y

x

y

(a) center (b) spiral
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Autonomous planar linear homogeneous systems

Borderline cases

τ2 − 4∆ = 0.

A = τ
2 I , star point: all directions are eigendirections;

otherwise degenerate node: only one eigendirection.

fa
st

slo
w

(a) star (b) node (c) degenerate node
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Inhomogeneous linear systems

Variation of parameters u̇ = A(t)u + F (t)

Fundamental matrix Ψ(t) = (ψ
1
(t), . . . , ψ

n
(t)), s.t., Ψ̇(t) = A(t) Ψ(t).

Then we insert a solution of the homogeneous system,

u(t) =
n∑

j=1

yjψj
(t) = Ψ(t)y

for yj = yj(t) in the inhomogeneous system:

Ψ(t)ẏ(t) +�����Ψ̇(t)y(t)−
�������
A(t)Ψ(t)y(t) = F (t) =⇒ ẏ(t) = Ψ−1(t)F (t).

Integrating and substituting in u(t), we find the solution of the IVP
u̇(t)− A(t)u(t) = F (t), u(0) = u0:

u(t) = Ψ(t)

∫ t

0
Ψ−1(s)F (s)ds + Ψ(t)u0.
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Inhomogeneous linear systems

Example: u̇ = Au + F

F (t) =

(
et

0

)
, A =

(
−1 2
3 −2

)
, with τ = −3, ∆ = −4. (1)

Eigenvalues of A are λ1 = −4, with eigenvector ψ
1

= (2,−3) and λ2 = 1
with ψ

2
= (1, 1). The fundamental matrix is

Ψ(t) =

(
2e−4t et

−3e−4t et

)
, and its inverse is Ψ−1(t) =

1

5

(
e4t −e4t

3e−t 2e−t

)
(2)

For F (t) as in (1), we find

dy

dt
= Ψ−1F =

1

5

(
e5t

3

)
=⇒ y =

1

5

(
(e5t − 1)/5

3t

)
, (3)

which satisfies y(0) = 0 and yields the particular solution

u(t) = Ψ y =
et

5

(
2
5 (1− e−5t) + 3t
−3

5 (1− e−5t) + 3t

)
. (4)
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Inhomogeneous linear systems

Undetermined coefficients for the example

We use u(t) = (b + ct)et , because λ2 = 1. We get

(b + c + ct)��e
t = A(b + ct)��e

t +

(
1
0

)
��e
t .

Thus Ac = c (so c = µψ
1

is the eigenvector corresponding to λ2 = 1), and

c = µ

(
1
1

)
, (A− I )b = c −

(
1
0

)
.

The latter equation gives 2(c2 − c1) = µ− 1, −3(c2 − c1) = µ. Then
−2

3 = µ−1
µ =⇒ µ = 3

5 and c1 − c2 = 1/5. Thus

u(t) = et
(

3t
5 + c2 + 1

5
3t
5 + c2

)
,

and the general solution of the system is (c2 = −3
5 , k1 = −1

5 previously)

u(t) = et
(

3t
5 + 1

5
3t
5

)
+ c2

(
et

et

)
+ k1

(
2e−4t

−3e−4t

)
, c2, k1 arbitrary const.
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Inhomogeneous linear systems

Supplementary material: Reduction to normal modes

Let A = R−1D R, where D is a diagonal matrix with entries d1,. . . , dn.
u = R v yields

u̇ = Rv̇ = AR v + F (t) =⇒ v̇ = R−1AR v + R−1F (t) = D v + R−1F (t),

that is

v̇(t) = D v + R−1F (t), v̇i = divi +
n∑

j=1

(R−1)ijFj(t),

for i = 1, . . . , n. The solutions are

vi (t) = cie
di t +

n∑
j=1

(R−1)ij

∫ t

0
edi (t−s)Fj(s) ds, (5)

ui (t) =
n∑

k=1

(R)ikcke
dk t +

n∑
j ,k=1

(R)ik(R−1)kj

∫ t

0
edk (t−s)Fj(s) ds. (6)
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Inhomogeneous linear systems

Supplementary material: Reduction to normal modes for
the example

Transformation matrices: R = Ψ(0) and R−1 = Ψ−1(0), the diagonal
components of D are d1 = −4, d2 = 1. The components of the vector

R−1F (t) are 1
5e

t and 3
5e

t . Then normal mode equations are

dv1

dt
= −4v1 +

1

5
et ,

dv2

dt
= v2 +

3

5
et .

Solving these equations, we find the normal modes

v1 = e−4tc1 +
1

25
et , v2 =

(
c2 +

3t

5

)
et , thereby yielding

u1 = 2e−4tc1 + etc2 +
et

5

(
2

5
+ 3t

)
, u2 = −3c1e

−4t +

(
c2 +

3t

5
− 3

25

)
et .

With c1 = − 1
25 , c2 = 0, this equation becomes (4).
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