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I. BASICS

1. Differential equation is a relation between a function (the unknown) and its deriva-

tives. To solve the differential equation means finding the function or family of

functions that satisfy the equation.

2. If the unknown is a function of one variable, the differential equation is called an

ordinary differential equation (ODE). If it is a function of several variables, we

have a partial differential equation (PDE).

3. Order of a differential equation is the order of the highest derivative appearing in

it.

4. If the unknown is a vector function and so is the relation between its derivatives and

the unknown, we have a system of (ordinary or partial) differential equations.

5. Linear ordinary differential equation of order N :

These equations can be written in the form

N∑
n=0

an(x)u(n)(x) = F (x). (1)

Where the derivatives of the unknown function u(0)(x) = u(x) are u(n)(x) =

dnu/dxn , n = 1, 2 · · ·N .

On the other hand, a0(x), a1(x), · · · , aN(x) and F (x) are known functions.

Any other ODE is nonlinear.

If F (x) ≡ 0, (1) is a homogeneous linear ODE; if not, it is an inhomogeneous

linear ODE. F (x) is often called the source term.

6. An Nth order ODE can be written as a system of N first order ODEs.

For example, (1) is equivalent to

u′0 = u1, . . . , u′n−1 = un, . . . , u′N−1 =
F (x)−

∑N−1
n=0 an(x)un

aN(x)
,

where u0(x) = u(0)(x) ≡ u(x) , un(x) = u(n)(x) , n = 1, 2, · · · , N − 1.

7. There are differential equations whose solutions can be found explicitly by analytical

methods. These equations are a small class of all possible differential equations and,
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in many cases, they are linear. In some cases, the differential equation we want to solve

is close to another one whose solution we can find analytically. There are techniques

to exploit this ‘closeness’ to find approximations to the solutions of the equation of

interest. You will find examples of this line of reasoning in other engineering, physics

or applied mathematics courses. In many cases, we can find approximate solutions

of the differential equations and additional boundary conditions by numerical

methods that replace the original differential equation by difference equations or by

algebraic problems that are solved with a computer.

We will see several numerical methods for ODEs and PDEs in this course.

Examples.

Differential equations appear naturally because we try to understand phenomena by seeking

relations between rates of variation of magnitudes and the magnitudes themselves according

to physical reasoning. Consider for instance, a large number of cows in an enclosed valley

with abundant pasture. Let u(t) be the number of cows per hectare. A simple assump-

tion about the growth of cow population is that their growth, u̇ = du/dt is proportional to

u:

du

dt
= r u. (2)

The proportionality constant r > 0 is called the birth rate.

Equation (2) is a first order linear homogeneous ODE of the form (1) with a1 = 1, a0 = −r,

F = 0.

A typical problem (called an initial value problem (IPV)) is to find u(t) knowing the

cow density u(0) = u0 at a given time t = 0.

Solution by separation of variables:∫ u du

u
=

∫ t

r dt =⇒ lnu = rt+ µ =⇒ u(t) = c ert, (3)

where c = eµ is an arbitrary constant.

We can show that (3) is the most general solution of the ODE (2): write u(t) = ertv(t) and

substitute in the ODE. We get dv/dt = 0 which immediately implies v = c (constant).

Of all these solutions, only one obeys the initial condition (IC): u(0) = c implies c = u0,

which is the only value of c that satisfy the IC.
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Note that the two relations, the ODE (3) and the initial condition u(0) = u0

uniquely determine the density u(t).

This is typical of mathematical models arising from the sciences: they give rise to differential

equations with a number of boundary conditions whose solution is unique. Mathematical

conditions that guarantee existence and uniqueness of the solution to initial value problems

will be explained later.

Physical meaning of the solution:

The initial cow population u0 is doubled at time t1 = ln 2/r and it becomes 2nu0 at time

tn = n ln 2/r.

This population explosion applied to the human population on earth is known as Malthus

law (1798).

For example, assuming that the population grows 2% per year, the birth rate is r = 0.02/year

and the population will double at time t1 = 50 ln 2 ≈ 34.65 years and quadruplicate in about

70 years.

Of course an enclosed valley has limited resources and may correct (2) by imagining that

the birth rate becomes zero when the carrying capacity of the valley (maximum cow density

stably supported by the valley) C is reached.

Thus we would replace the constant r in the ODE by r(1 − u/C) thereby obtaining the

logistic equation

du

dt
= r u

(
1− u

C

)
, (4)

proposed by F. Verhulst (1838). (4) can also be solved by separation of variables although

the algebra is now a little bit more involved.

The result is

u(t) =
C

Ce−rt−µ + 1
=

Cu0
u0 + (C − u0)e−rt

, (5)

once the constant of integration µ is calculated so that u(0) = u0. It is obvious that any

nonzero initial cow density will evolve to the carrying capacity C as t→∞.

There are two critical points (also called equilibrium solutions) u = 0 and u = C which

are constant solutions of (4).

Clearly, initial conditions near u = 0 give rise to solutions that move away from it whereas

initial conditions in a neighborhood of u = C give rise to solutions that approach it.

The critical point u = 0 is unstable whereas u = C is asymptotically stable.
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II. FIRST-ORDER LINEAR ODE

We now turn to the solution of the general first-order linear ODE (1):

a1(x)u′ + a0(x)u = F (x). (6)

To find the general solution, we first solve the corresponding homogeneous equation with

F = 0 by separation of variables.

The result is

uh(x) = e−g(x), g(x) =

∫ x a0(t)

a1(t)
dt. (7)

We now multiply the inhomogeneous equation (6) by eg(x) and divide by a1(x).

We observe that the result may be written as

[eg(x)u]′ =
F (x)eg(x)

a1(x)
, (8)

which is immediately integrated to produce

u(x) = e−g(x)
∫ x

eg(t)
F (t)

a1(t)
dt =

∫ x

e−
∫ x
t a0(s)/a1(s)ds

F (t)

a1(t)
dt. (9)

eg(x)/a1(x) is called an integrating factor for (6) because it reduces it to (8) that can be

solved by direct integration.

Any two possible choices of g(x) differ by a constant of integration (which we may denote

by µ) which gets cancelled in (9).

Thus the choice of g(x) does not matter.

However, selecting one particular primitive of

P (x) = e−g(x)
∫ x

eg(t)
F (t)

a1(t)
dt, (10)

the most general solution of (6) can be written as

u(x) = Ae−g(x) + P (x), (11)

where A is a constant.

The result (11) says that the general solution of the inhomogeneous linear ODE (6) is

the sum of a particular solution P (x) of the inhomogeneous linear ODE plus

a general solution of the associated homogeneous equation.
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It turns out that this statement, known as the superposition principle is also true for

the general Nth-order linear ODE (1):

If P (x) is a particular solution of (1) and uj(x), j = 1, . . . , R are solutions of

the associated homogeneous equation with F = 0, P (x) +
∑R

j=1Ajuj(x) is also a

solution of (1) for any numbers Aj.

Examples.

1. u′ + xu = xex
2

with u(0) = 1.

Observe that ex
2/2 is an integrating factor (this is better done by inspection, not by

the laborious procedure of using (7) unless you are beaten after trying for a while).

Then (ex
2/2u)′ = xe3x

2/2 from which ex
2/2u(x) = 1

3
e3x

2/2 + c and therefore u(x) =

1
3
ex

2
+ ce−x

2/2.

The initial condition gives 1 = c+ 1/3 and thus u(x) = 1
3
[ex

2
+ 2e−x

2/2].

2. Variation of parameters provides the same solution. uh = Ce−x
2/2 is the solution of

the homogeneous equation. Replace the parameter C by a function v(x) (variation

of parameters) and substitute u(x) = e−x
2/2v(x) in the inhomogeneous ODE.

The result is u′ + xu = v′e−x
2/2 = xex

2
.

This yields the simpler ODE v′ = xe3x
2/2 which can be integrated immediately: v =

1
3
e3x

2/2 + c.

The corresponding solution of the inhomogeneous ODE is u(x) = 1
3
ex

2
+ ce−x

2/2.

3. The result that the solution of the linear first-order inhomogeneous ODE is the sum

of a particular solution of the ODE plus a general solution of the corresponding ho-

mogeneous ODE suggests another solution method.

Try up(x) = Aex
2

as a particular solution of the inhomogeneous ODE u′+xu = xex
2

and calculate the undetermined coefficient A:

u′p + xup = A2xex
2

+ xAex
2

= 3Axex
2

should be equal to xex
2
. This gives 3A = 1 or

A = 1/3.

Then the particular solution is up(x) = 1
3
ex

2
, the general solution of the homo-

geneous equation is uh(x) = ce−x
2/2 and the general solution is the sum u(x) =

1
3
ex

2
+ ce−x

2/2, as before.
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4. u′ + xu = x2m+1 with u(1) = 1 and m = 0, 1, . . ..

We find (ex
2/2u)′ = ex

2/2x2m+1 = x2m(ex
2/2)′ whose right hand side can be found

exactly by integration by parts:

Im =
∫
ex

2/2x2m+1dx = x2mex
2/2 − 2mIm−1.

The solution of the first-order linear difference equation Im + 2mIm−1 = fm is Im =

(−2)mm!I0 +
∑m

j=1(−2)m−jfjm!/j! and therefore the general solution of the ODE is

u(x) = ce−x
2/2 +

∑m
j=0(−2)m−jm!x2j/j!.

The initial condition yields c =
√
e[1−

∑m
j=0(−2)m−jm!/j!].

5. A more direct method to find a particular solution is to use undetermined

coefficients.

We try a mth degree polynomial in x2 as a particular solution: up =
∑m

j=0 ajx
2j, insert

in the ODE and find equations for the coefficients aj:

u′p + xup =
∑m

j=0 2jajx
2j−1 +

∑m
j=0 ajx

2j+1 =
∑m

j=0[(2j + 2)aj+1 + aj]x
2j+1 = x2m+1

with am+1 = 0.

Then am = 1 and all other coefficients satisfy: aj = −2(j+ 1)aj+1, j = 0, 1, . . . ,m−1.

This gives the particular solution up =
∑m

j=0(−2)m−jm!x2j/j! and adding the general

solution of the homogeneous ODE yields the same general solution as before: u(x) =

ce−x
2/2 +

∑m
j=0(−2)m−jm!x2j/j!.

III. FIRST-ORDER NONLINEAR ODE

Most nonlinear equations cannot be solved exactly. However there are classes of equations

that can be solved exactly and it is important to know them. The usual procedure is to

make a substitution which converts these equations into linear or exactly solvable ones.

A. Bernoulli equations

u′ = a(x)u+ b(x)uP . (12)

For P = 0, 1 these equations are linear and we already have seen how to solve them. For

any other number P these nonlinear equations can be converted in linear ones dividing

7



them by uP and observing that the resulting equation is a linear equation for y = u1−P :

since y′ = (1− P )u−Pu′, we get

y′ = (1− P )a(x)y + (1− P )b(x). (13)

This equation is linear and inhomogeneous.

Example.

The ODE u′ = x/(x2u2 + u5) is not a Bernoulli equation in u(x). However we can rewrite

it as dx/du = u2x+ u5/x which is of Bernoulli type with P = −1 for x(u).

The solution is x(u) = ±
√
ce2u3/3 − u3 − 3

2
.

B. Riccati equations

u′ = a(x)u2 + b(x)u+ c(x). (14)

When a = 0 this ODE is linear and when c = 0 is a Bernoulli equation.

In all other cases the solution can be found analytically if we are able to spot a particular

solution of the Riccati equation, no matter how simple that may be. Let u = u1(x) be a

particular solution of (14). The transformation u = u1(x) + y(x) eliminates c(x) thereby

yielding a Bernoulli equation for y(x) that can be solved exactly.

The Bernoulli equation for y(x) is

y′ = [b(x) + 2a(x)u1(x)]y + a(x)y2. (15)

Example.

u′ = u2 − xu+ 1 has the particular solution u1 = x.

The general solution is found by substituting u = x + y(x) in the Riccati equation thereby

getting y′ = xy + y2.

Division by y2 gives −(1/y)′ = 1 + x/y, i.e., z′ + xz = −1 for z = 1/y.

Using the integrating factor ex
2/2, we find (ex

2/2z)′ = −ex2/2, from which 1/y = z = ce−x
2/2−∫ x

0
e−(x

2−t2)/2dt.

The solution of the original Riccati equation is

u(x) = x+
ex

2/2

c−
∫ x
0
et2/2dt

.
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Note: In most cases, a particular solution of a Riccati ODE is not known.

In fact, the substitution

u(x) = − w′(x)

a(x)w(x)
(16)

transforms the Riccati ODE (14) into the second-order linear homogeneous ODE:

w′′ −
[
a′(x)

a(x)
+ b(x)

]
w + a(x)c(x)w = 0. (17)

This transformation also goes in reverse. There is a Riccati ODE for every second-order

homogeneous linear ODE.

Since there is no closed form solution for all second-order linear ODEs, many Riccati ODEs

do not have a solution in closed form.

C. Exact equations

These ODEs can be written in the form

M(x, u) +N(x, u)u′ =
d

dx
f(x, u(x)) = 0 (18)

and the solution is f(x, u(x)) = c.

A necessary and sufficient condition for exactness is that

∂M

∂u
=
∂N

∂x
. (19)

Examples.

1. Separable ODEs are exact because they have the form M(x) + N(u)u′ = 0. Thus

∂M/∂u = ∂N/∂x = 0.

2. The ODE u′ = (x2 − u)/(u2 + x) is exact:

(u−x2) + (u2 +x)u′ = 0 gives M = u−x2, N = u2 +x so that ∂M/∂u = ∂N/∂x = 1.

To solve it, we use for example ∂f/∂u = N = u2 + x.

Then f(x, u) = 1
3
u3 + xu+ g(x), where g(x) is the “constant of integration”.

Insertion in ∂f/∂x = u + g′(x) = u − x2 (which is M) gives g′ = −x2 so that

f(x, u) = xu+ (u3 − x3)/3 and the general solution is u3 + 3xu− x3 = c1.
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3. Integrating factor. Sometimes multiplication by a factor renders exact a given

ODE.

(1 + xu+ u2) + (1 + xu+ x2)u′ = 0 is not exact because ∂M/∂u 6= ∂N/∂x.

However it becomes exact when we multiply it by I = exu.

With this integrating factor, the ODE can be written as [(x + u)exu]′ = 0 whose

solution is (x+ u)exu = c

D. Substitutions

Sometimes a substitution converts a nonlinear ODE to one that is directly solvable.

Linear substitutions are the easiest to spot.

Some examples:

1. y = x+ u converts u′ = cos(x+ u) in the separable ODE: y′ = 1 + cos y.

2. The linear transformation x = av+ bw+ c, u = dv+ ew+ f , with a suitable choice

of the coefficients a, b, c, d, e, f , converts u′ = (Ax+Bu+C)/(Dx+Eu+ F ) into a

separable ODE for w(v).

3. For an ODE u′ = F (u/x), the substitution y = u/x gives a separable ODE for y(x):

y′ = [F (y)− y]/x.

4. u′ = u/x + 1/(u + x) becomes a Bernoulli ODE after the change y = x + u: y′ =

y/x+ 1/y.

Setting z = y2, we obtain the linear ODE z′ = 2z/x+ 2.

A particular solution of the form z = kx gives k = 2k + 2 or k = −2.

The general solution is then −2x plus a general solution of the homogeneous ODE

which is cx2: z = cx2−2x. (Equivalently, divide by x2 to obtain (z/x2)′ = 2/x2). The

solution of the original ODE is u(x) = −x± (cx2 − 2x)1/2.
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FIG. 1: Direction field in the (x, y) plane for the ODE y′ = 9.8 − 0.2y showing the equilibrium

solution y∗ = 9.8/0.2 = 49.

IV. DIRECTION FIELDS, EXISTENCE AND UNIQUENESS OF SOLUTIONS

OF THE IVP

Consider the ODE

dy

dx
= f(x, y). (20)

We want to visualize the solutions as trajectories in the plane (x, y). For that we can

cover the plane with a grid and plot tangent lines of slope f(x, y) at each grid point

(x, y).

This visualization uses the computer as a tool and produces the direction field (also

called slope or tangent field) of Fig. 1 for the ODE y′ = 9.8− 0.2y.

Note that the grid consists of points xj = 0.5j, j = 0, 1, . . . , 20 and yk = k, k = 39, . . . , 60

that cover the rectangle with corners (0, 39), (10, 39), (0, 60), (10, 60).

The equilibrium solution coincides with the isocline of zero slope 9.8 − 0.2y = 0, i.e.,

with the line y = 49.

The trajectories y = y(x) are curves whose tangent at a point (x, y) are f(x, y). Visualizing
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the tangent field, we can plot qualitatively the trajectories.

In this example, the trajectories are curves that approach the equilibrium solution as x→∞.

This of course agrees with the fact that the solution of the ODE parametrized by the

arbitrary integration constant c is

y(x) = 49 + c e−x/5.

Equivalently, the solution of the initial value problem (IVP) y = y0 at x = x0 is

y(x) = 49 + (y0 − 49) e−(x−x0)/5.

From the slope field, we expect that the solution that starts at a given point (x0, y0) is not

crossed by any other trajectory. In fact, at point where two different trajectories cross there

would be two different values of f(x, y) which cannot occur for a single-valued function.

This condition is made more precise by the following:

Theorem of existence and uniqueness:

Provided f and ∂f/∂y are continuous in a rectangle R and (x0, y0) ∈ R, y′ = f(x, y) has

a unique solution for |x − x0| < δ (for some δ > 0 that leaves x in the rectangle R) that

satisfies the initial condition y(x0) = y0.

The proof can be found in most books. See for instance page 112 of Boyce and Di Prima

[1]. Typically the IVP is transformed in an integral equation that is solved by iteration

justifying the steps. It is possible to prove that the solutions depend continuously on the

initial data (x0, y0) although that is outside the scope of this course. See chapter 2 of [4].

What happens if the premises of the theorem are not fulfilled?

Consider the IVP
dy

dx
= 2
√
y, y(0) = 0.

Clearly the premises of the theorem are not satisfied at (0, 0) because
√
y does not have a

continuous derivative there.

Separation of variables gives the solution of the IVP y(x) = x2, but y(x) = 0 and

y(x) = (x − ξ)θ(x − ξ) for any ξ > 0 are also solutions. [θ(x) = 1 for x > 0 and θ(x) = 0
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for x < 0 is the Heaviside unit step function.]

It turns out that having a continuous f(x, y) at (x0, y0) and in a rectangle about it

guarantees the existence of a solution to the IVP but, as we have seen with the previous

example, we need continuity of ∂f/∂y to have a unique solution of the IVP.

A slightly more precise and general condition can be found in the version of the existence

and uniqueness theorem of [4].

We now calculate the slope field of a more difficult example:

dy

dx
= xy(y − 2). (21)

The computer construction of the slope field proceeds by selecting a large enough

rectangle, setting a grid and depicting the slopes at the grid points.

The human construction has to be somewhat more intelligent. We want to separate the

plane in sectors where we know the sign of y′ and of y′′. In particular, we want to find

sectors where:

a. y′ < 0, y′′ < 0: trajectories are decreasing and concave;

b. y′ < 0, y′′ > 0: trajectories are decreasing and convex;

c. y′ > 0, y′′ < 0: trajectories are increasing and concave;

d. y′ > 0, y′′ > 0: trajectories are increasing and convex.

Sectors of equal sign of y′ are separated by isoclines of slope zero (horizontal tangent)

or infinite (vertical tangent).

Sectors of equal sign of y′′ are separated by lines of inflection, points where y′′ = 0.

We have to use the chain rule to calculate y′′:

d2y

dx2
=

d

dx
f(x, y(x)) =

∂f

∂x
+
∂f

∂y

dy

dx
=
∂f

∂x
+
∂f

∂y
f.

Now we follow the protocol:

i) Draw the zero-slope isoclines (also called nullclines): f(x, y) = 0;

ii) Draw the infinite-slope isoclines: 1/f(x, y) = 0;
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x

y

2

0

y′ > 0y′ < 0

y′ < 0y′ > 0

y′ > 0y′ < 0

(a)

x

y

2

0

y′′ > 0

y′′ > 0

y′′ > 0y′′ > 0

y′′ < 0

y′′ < 0y′′ < 0

1
2

√
2−1

2

√
2

(b)

x

y

2

0
1
2

√
2−1

2

√
2

(c)

FIG. 2: Sectors of (a) decreasing and increasing y(x), (b) concave and convex y(x), (c) combined

information about signs of y′ and y′′. The ODE is y′ = xy(y − 2).

iii) Draw the inflection point curves: y′′ = ∂f
∂x

+ ∂f
∂y
f = 0;

iv) Separate the plane in the sectors a, b, c, d as written above.

For the example (21), we find:

i) Nullclines: x = 0, y = 0, and y = 2. The nullclines y = 0 and y = 2 are also lines of

equilibrium points.

ii) No lines of vertical slope.

14



FIG. 3: Slope field and trajectories in the (x, y) plane for the ODE y′ = xy(y − 2).

iii) y′′ = y(y− 2)(1 + 2x2y− 2x2) = 0. Thus the lines of inflection points are y = 0, y = 2

and y = 1− 1
2x2

.

iv) The separation of the plane in sectors is as indicated in Figure 2.

Figure 3 shows the slope field and several representative trajectories.

Separating variables, we find the general solution:∫
x dx =

∫
dy

y(y − 2)
=

1

2

∫ [
1

y − 2
− 1

y

]
dy =

1

2
ln

∣∣∣∣y − 2

y

∣∣∣∣ =
1

2
ln

∣∣∣∣1− 2

y

∣∣∣∣.
This gives |1− 2/y| = c ex

2
, i.e. 1− 2/y = ±c ex2 (c > 0) or

y =
2

1− c ex2
, c es un número real arbitraro. (22)

The trajectories of the figure 3 are obtained by taking the following values of the constant

c in equation number (22):

(red) c = 1
3
, (green) c = 0.1 , (magenta) c = −1

2
, (cyan) c = −1 , (blue) c = 0 , (yellow)

c = 3 .
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t

y

(t1, y1)

(t2, y2)

(t3, y3)

t0 t1 t2 t3

y0
y = ϕ(t)

y = ϕ1(t)

y = ϕ2(t)

FIG. 4: The Euler method approximates a given trajectory y = ϕ(t) by segments that move it to

nearby trajectories ϕ1(t), ϕ2(t), . . . in the (t, y) plane.

V. NUMERICAL METHODS: EULER METHOD

The oldest numerical method to solve the general first-order IVP (20), y′ = f(t, y) with

y(t0) = y0, uses the slope field [1].

In fact, at the point t0, the tangent line to the trajectory passing through this point

is

y = y0 + f(t0, y0)(t− t0).

We can approximate the trajectory by this tangent for small enough |t− t0|, up to a point

t1 so that y(t1) ≈ y1 = y0 + f(t0, y0)(t1− t0). After the segment t1− t0, we can approximate

y(t) ≈ y1 + f(t1, y1)(t− t1) up to a point t2 so that y(t2) ≈ y2 = y1 + f(t1, y1)(t2 − t1), and

so on.

The type of approximation we are doing is depicted in Fig. 4. If we divide a time interval

[0, T ] in N equal pieces of width h, we obtain the usual form of the Euler scheme that

starts at the initial condition y(t0) = y0:

yj+1 = yj + f(tj, yj)h, (23)

t0 < t1 = t0 + h < . . . < tj = t0 + jh < . . . < tN = t0 +Nh = T.

The Euler method approximates better the solution as the segments |tj+1 − tj| become

smaller.

From Fig. 4 we also conclude that when the trajectories are converging the errors are small

whereas they increase when the trajectories are diverging.
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A more quantitative assessment of the Euler method [1], can be obtained as follows.

First we rewrite the IVP as the equivalent integral equation:

y(t) = y0 +

∫ t

0

f(y(s), s) ds. (24)

This equation immediately produces for 0 ≤ τ < t ≤ T :

y(t) = y(τ) +

∫ t

τ

f(y(s), s) ds. (25)

To approximately solve this equation on an time interval [0, T ], we divide this interval in

N pieces: 0 ≤ t1 = h, . . . , tN = hN and approximate the integral by some quadrature

scheme. One-step methods set t = tj+1 and τ = tj.

The simplest such methods is the Euler scheme:

yj+1 = yj + hf(tj, yj), (26)

in which the integral is approximated by h times the integrand evaluated at the earlier time

tj.

We have called yj the approximation to the solution y(t) at time t = tj = jh.

Note that the Euler method also follows from approximating the derivative dy(t)/dt ≈

(yj+1 − yj)/h.

For general one-step schemes, we can prove that consistent one-step methods are also

convergent.

Example 1.

Consider the IVP 
dy(t)
dt

= ry(t),

y(0) = u0 > 0.
(27)

to be solved on [0, 1].

The Euler method gives

yj+1 = yj + hryj = (1 + hr)yj, y0 = y0, h =
1

N
, j = 0, 1 . . . , N. (28)

The solution of the scheme is

yj = (1 + hr)jy0. (29)
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Note that the exact solution is y(t) = erty0 so that y(tj + h) = erhy(tj).

Equation (28) shows that the Euler method approximates erh by the straight line 1 + rh.

Errors.

Suppose that we have approximated the IVP by a one-step numerical scheme yj+1 =

yj + Φ(tj, yj, yj+1, h)h.

We have Φ(tj, yj, yj+1, h) = f(tj, yj) for the Euler scheme. The latter is an explicit scheme

because yj+1 is given as an explicit function of yj.

Let us define the local truncation error or discretization error of the one-step numerical

scheme as:

τj+1 =

∣∣∣∣y(tj+1)− y(tj)

h
− Φ(tj, y(tj), y(tj+1), h)

∣∣∣∣, j = 0, 1, . . . , N − 1, (30)

where we substitute the exact solution y(tj) instead of yj.

If the τj vanish as h → 0, we say that the difference equations are consistent with

the differential equation.

For the Euler method (23), the Taylor theorem and the chain rule give

y(tj+1)− y(tj)

h
=
y(tj + h)− y(tj)

h
=
dy(tj)

dt
+
h

2

d2y(ξ)

dt2

= f(y(tj), tj) +
h

2

[
∂f

∂t
(ξ, y(ξ)) +

∂f(ξ, y(ξ))

∂y
f(ξ, y(ξ))

]
, (31)

where tj ≤ ξ ≤ tj+1, provided continuous partial derivatives of f exist.

In this case, the maximum truncation error is bounded by

τ = max
j
|τj| ≤

h

2
M2, M2 = sup

0≤t≤T

∣∣∣∣d2y(t)

dt2

∣∣∣∣. (32)

The result (32) indicates that the Euler method has local truncation error of order h.

Definition. We say that f(h) = O(g(h)) as h → 0 if there exist two positive constants c

and ε such that |f(h)| < c|g(h)| for all |h| < ε.

It is possible to show that the global error supj |y(tj) − yj| is also of order h and this

shows that the Euler method is an O(h) or first-order method.
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Code.

We will implement Euler’s method with Matlab to integrate the following problem: y′ + y = 0

y(0) = 1
,

on the domain 0 ≤ x ≤ 5. We will use several discretization steps (h = 0.5, 0.25, 0.1) and

compare the approximate solution with the exact solution y(x) = e−x. A Matlab code for

the Euler method can be the following:

clear all % To clear all the previous data .

h=0.5; % The step of the discretization.

a=0;b=5; % Domain.

N=round((b-a)/h) % N+1 is the number of total nodes.

x(1)=0 ; y(1)=1; % Initial condition.

exacsol(1)=y0; % First value of the exact solution.

for i= 1:N % Onset of the iterative process.

y(i+1)=y(i)+h*(-y(i));%EXPLICIT EULER ESCHEME

x(i+1)=x(i)+h; %Next node.

exacsol(i+1)=exp(-x(i+1));

end

plot(x,y,’r*’,x,exacsol)

xlabel(’x’) ; ylabel(’y’) ; legend(’Aprox. by explicit Euler’,’Exact solution’)

Let us explore the relationship between the order of the Euler method and the

results obtained using it.

Table I compares the results obtained by the Euler method with steps h = 0.5, 0.25, 0.1.

The total error is the maximum error made by the method as compared to the exact solution.

For the Euler method, these errors decrease as h : if we take h1 = 0.5, the error is error1 =

0.1179. Reducing now the step by factors 2 and 5 (i.e., h2 = h1/2 = 0.25 and h3 =

h1/5 = 0.1), reduces the error by factors 2 and 5, respectively (error1/2 ≈ error2 = 0.0515,

error1/5 ≈ error3 = 0.0192).
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h N (number of nodes) Total error of the Euler method

0.5 11 0.1179

0.25 21 0.0515

0.1 51 0.0192

TABLE I: Total errors of the Euler method for steps h = 0.5, 0.25 and 0.1.

Backward Euler method.

We could have approximated the integral in (25) for t = tj+1 and τ = tj by hf(tj+1, yj+1),

thereby getting

yj+1 = yj + hf(tj+1, yj+1), j = 0, 1, . . . , N − 1. (33)

This scheme is implicit because the right-hand side is a function of yj+1 (unless f is inde-

pendent of y) and we have to solve (33) for yj+1 at each step. (33) is called the backward

Euler method and it could have been obtained from the ODE y′ = f(t, y) had the time

derivative dy/dt at time tj+1 been replaced by the backward finite difference (yj+1 − yj)/h.

The backward Euler method is also an O(h) method.

Example 2.

Solve the first-order IVP by the backward Euler method.

We get

yj+1 = yj + hryj+1, y0, h =
1

N
, j = 0, 1 . . . , N − 1, (34)

insead of (28). Solving this equation for yj+1, we find

yj+1 =
yj

1− hr
=

y0
(1− hr)j

, j = 0, 1 . . . , N − 1. (35)

This equation makes sense for h small enough so that hr < 1.

Example 3: failure of the Euler method.

Solving the IVP y′ = 2
√
y, y(0) = 0, by the Euler method, we only find the solution y(0) = 0.

The reason is that the Euler method is explicit and if we start with y0 = 0, we always obtain

yj = 0.

On the other hand, the backward Euler method gives yj+1 = yj + 2hy
1/2
j+1.
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For y0 = 0, we find y1 = 2hy
1/2
1 , which has the solutions y1 = 0 and y

1/2
1 = 2h or y1 = (2h)2.

If we have reached y1 = (2h)2, the next iterates try to reach the solution of the ODE,

y(t) = t2. Any small error that makes y0 > 0 will give iterates trying to reach t(t) = t2.

VI. HEUN’S METHOD

The Euler method is simple but low order. To improve it, we need to approximate better

the integral in (24). A possibility is to use the trapezoidal rule∫ tj+1

tj

f(s, y(s)) ds ≈ h

2
[f(tj+1, y(tj+1)) + f(tj, y(tj))]. (36)

We obtain the following implicit method

yj+1 = yj +
h

2
[f(tj+1, yj+1) + f(tj, y(tj))], j = 0, 1, . . . , N − 1, (37)

which is sometimes called a Crank-Nicholson scheme.

To make this scheme explicit, we can calculate y(tj+1) in (36) using the Euler method. The

result is called Heun’s method:

yj+1 = yj +
h

2
[f(tj+1, yj + hf(yj, tj)) + f(tj, yj)], j = 0, 1, . . . , N − 1. (38)

Heun’s method is an example of a predictor-corrector scheme in which we use Euler’s

method to make a prediction of y(tj+1) and correct it by inserting this prediction in (36).

(38) may be equivalently written as

pj+1 = yj + hf(tj, yj), tj+1 = tj + h,

yj+1 = yj +
h

2
[f(tj+1, pj+1) + f(tj, yj)], j = 0, 1, . . . , N − 1. (39)

Using the Taylor theorem, we can prove that Heun’s method has a truncation error

τ = O(h2). The global error is also of order h2.

Accordingly, if we halve the step in Heun’s method, the global error becomes one quarter.

Example 4.

Heun’s method applied to the IVP (27) of Example 1 yields

pj+1 = yj + hryj,

yj+1 = yj +
hr

2
(pj+1 + yj), j = 0, 1 . . . , N − 1. (40)
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In this case, pj+1 = (1 + hr)yj and (40) produces

yj+1 =

(
1 + hr +

h2r2

2

)
yj =

(
1 + hr +

h2r2

2

)j
y0, j = 0, 1 . . . , N − 1. (41)

The exact solution is y(tj + h) = erhy(tj) = er(tj+h)y0 which compared to (41) shows that

the Heun method produces one more term in the approximation of the exponential erh than

the Euler method that gives yj+1 = (1 + rh)yj = (1 + rh)jy0.

VII. RUNGE-KUTTA METHODS

A different family of integration methods for the usual IVP starts by Taylor expanding

a finite difference:

y(t+ h)− y(t) = h
dy

dt
(t) +

h2

2

d2y

dt2
(t) +O(h3)

= hf(t, y) +
h2

2

[
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t)) f(t, y(t))

]
+O(h3), (42)

where we have substituted ∂f
∂t

(t, y(t)) + ∂f
∂y

(t, y(t)) f(t, y(t)) instead of d2y
dt2

(t).

Ignoring the error term, we obtain a numerical scheme of order 2.

However having to carry out the partial derivatives is computationally costly. Thus the

Runge-Kutta (RK) idea is to replace the right hand side of (42) by a linear combination of

two functions that gives a related scheme of the same order:

y(t+ h) = y(t) + Ahf0 +Bhf1, f0 = f(t, y), f1 = f(t+ Ph, y +Qhf0).

We now use the Taylor formula for functions of two variables to expand f1:

y(t+ h) = y(t) + (A+B)hf(t, y) +BPh2
∂f

∂t
(t, y) +BQh2

∂f

∂y
(t, y) f(t, y) +O(h3).

Equating this to (42), we obtain

A+B = 1, BP =
1

2
, BQ =

1

2
. (43)

This is a system of 3 equations for 4 unknowns, A, B, P and Q. Therefore we can give

values to one of the unknowns and obtain different second order RK schemes (RK2).

Common RK2 schemes are
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1. A = 1
2

and therefore B = 1
2
, P = 1, Q = 1. We recover the Heun scheme:

y(t+ h) = y(t) +
h

2
[f(t, y) + f(t+ h, y + hf(t, y))].

2. A = 0 gives B = 1, P = Q = 1
2

and the mid-point RK2, also called modified Euler

method or Cauchy method, is obtained:

y(t+ h) = y(t) + h f

(
t+

h

2
, y +

h

2
f(t, y)

)
.

3. A = 1
4

gives B = 3
4
, P = Q = 2

3
and we find

y(t+ h) = y(t) +
h

4
f(t, y) +

3h

4
f

(
t+

2h

3
, y +

2h

3
f(t, y)

)
.

It is possible to prove that this choice gives a truncation error O(h4).

Similar ideas are used to generate more precise RK3 and RK4 schemes commonly used in

numerical codes.

The Matlab routine ode45 is a variable-step RK4 scheme whose step size is adjusted using

a RK5 scheme to estimate the error made after each step.
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