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I. INTRODUCTION: CLASSIFICATION OF SECOND-ORDER PDES

Linear second order PDEs very often describe many phenomena in Engineering. Among

them, the heat equation (parabolic PDE), the wave equation (hyperbolic PDE)

and the Laplace equation (elliptic PDE) have paramount importance as they are

paradigms of phenomena occurring in many different fields.

Given a general linear second-order PDE with constant coefficients, aij, bi, c,

2∑
i,j=1

aij∂xi∂xju+
∑
i

bi∂xiu+ cu = F (x, y), (1)

we would like to know which initial and/or boundary values would render the solution

u(x, y) (with x1 = x, x2 = y) unique.

We can always select aij so that aij = aji.

The first idea could be to change variables in (1) so that this PDE acquires some canonical

form.

Let

xi =
2∑
j=1

Rijξj, ξi =
2∑
j=1

R−1
ij xj, (2)

change variables from (x1, x2) to ξ1, ξ2 (with ξ1 = ξ, ξ2 = η).

Inserting (2) into (1), we find

2∑
i,j,k,l=1

aijR
−1
ki R

−1
lj ∂ξk∂ξlu+

2∑
i,k=1

biR
−1
ki ∂ξku+ cu = F. (3)

Since the matrix of coefficients aij is symmetric, it has real eigenvalues λi and it can be

diagonalized by an orthogonal matrix R−1 = RT .

Selecting this matrix for the change of variable (2),

2∑
i,j,=1

aijR
−1
ki R

−1
lj =

(
R−1A(R−1)T

)
kl

=
(
R−1AR

)
kl

= λkδkl.

Then (1) becomes

2∑
k=1

λk∂
2
ξk
u+

∑
i

biRik∂ξku+ cu = F. (4)

Depending on the eigenvalues, we have the following cases:
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i) Case detA = a11a22 − a2
12 < 0, then λ1λ2 = detA < 0, so that λ1 < 0 < λ2.

The PDE is called hyperbolic.

Rescaling Ξ1 = |λ1|−1/2ξ1 and Ξ2 = λ
−1/2
2 ξ2, this PDE can be written as

−∂2
Ξ1
u+ ∂2

Ξ2
u = . . . , (5)

where we have omitted all terms with first-order or no derivatives.

The wave equation is a typical hyperbolic PDE and initial (two initial condi-

tions) and boundary conditions can be imposed to obtain a unique solution.

ii) Case detA = λ1λ2 > 0.

The two eigenvalues are both positive or both negative.

The PDE is called elliptic.

Rescaling Ξ1 = |λ1|−1/2ξ1 and Ξ2 = |λ2|−1/2ξ2, this PDE can be written as

∂2
Ξ1
u+ ∂2

Ξ2
u = . . . . (6)

The Laplace equation and the Poisson equation are typical elliptic equations.

Only boundary conditions can be imposed on these equations to obtain a unique

solution.

iii) Case the determinant of the coefficient matrix is zero and therefore one

eigenvalue is zero.

For instance, λ1 = 0. Then the PDE is called parabolic.

Rescaling Ξ2 = λ
−1/2
2 ξ2, this PDE can be written as

∂2
Ξ2
u = . . . . (7)

The heat equation is a typical parabolic PDE and boundary conditions and one

initial condition (there is only one derivative with respect to ξ1) can be imposed to

obtain a unique solution.

A similar classification can be found when u depends on more than two variables.

For n independent variables, hyperbolic equations correspond to a coefficient matrix

having (n− 1) positive (resp. negative) eigenvalues and one negative (resp. positive) eigen-

value. Elliptic equations are obtained when all the eigenvalues are non zero and have the
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same sign. Parabolic equations have (n − 1) eigenvalues of the same sign and one zero

eigenvalue.

Example 1.

Let us classify the equation

∂2
xu+ 2∂x∂yu− ∂2

yu = ∂xu+ 1.

The coefficient matrix has components a11 = 1, a12 = a21 = 1, a22 = −1, with negative

determinant −2. One eigenvalue is positive, the other negative. In fact, the eigenvalue

equation is λ2 − 2 = 0. Then λ = ±
√

2 and the equation is hyperbolic.

A similar classification can be made for equations with variable coefficients. The changes

of variable lead to more complicated formulas but if we only keep track of the second

derivatives of u, the first term of (3) is still the same and we can diagonalize the coefficient

matrix in the same way. The difference now is that the eigenvalues will be non-constant

functions.

Example 2.

Let us classify the Tricomi equation

∂2
yu− y∂2

xu = 0.

The coefficient matrix has components a11 = −y, a12 = 0, a22 = 1. The determinant of

the coefficient matrix is −y and therefore the Tricomi equation is hyperbolic for y > 0,

elliptic for y < 0 and parabolic for y = 0.

II. HEAT EQUATION

We start by studying heat conduction in solid bodies.

The rate of change of internal energy density in a spatial region R (that does not change

with time) in three-dimensional space equals the heat energy flowing across the boundaries

∂R per unit time plus the heat energy per unit time
∫
R
Q(x, t) dV produced by internal

sources.

The internal energy is the volume integral over R of the mass density ρ times the specific

heat c times the temperature u(x, t).

The heat energy flowing out of the region R per unit time per unit surface area is the outward
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normal component of the heat flux: q ·n, where n is the unit outward normal vector: q ·n > 0

means that the heat is leaving the region R, whereas if q · n < 0 the heat is flowing to R.

Then conservation of energy yields

d

dt

∫
R

ρcu dV = −
∮
∂R

q · n dS +

∫
R

Q(x, t) dV. (8)

The divergence theorem says that
∮
∂R
q ·n dS =

∫
R
∇ · q dV which, inserted in (8), produces∫

R

(
ρc
∂u

∂t
+∇ · q −Q(x, t)

)
dV = 0. (9)

Here we have assumed that ρ and c are time-independent and that R is any arbitrary fixed

region.

Assuming also that the integrand in Eq. (9) is continuous, it must be zero. This yields

ρc
∂u

∂t
= −∇ · q +Q(x, t). (10)

Experiments indicate that heat flows from hot to cold bodies in contact trying to equate

their temperatures.

This is expressed by Fourier’s law relating the heat flux to the gradient of temperature

q = −K∇u. (11)

K is the thermal conductivity.

Fourier’s law is a constitutive relation between q and u. Substituting (11) into (10), we

obtain the partial differential equation (PDE) for the unknown temperature u(x, t):

ρc
∂u

∂t
= ∇ · (K∇u) +Q(x, t), (12)

in which ρ, c, K and Q are supposed to be known functions.

If ρ, c and K are constant, we can rewrite (12) as

∂u

∂t
= k∇2u+ f(x, t), (13)

where the k = K/(ρc) is the thermal diffusivity and f = Q/(ρc) has units of temperature

per unit time.

If the body is a slender rod directed along the x axis, (13) becomes the one-dimensional

heat equation:

∂u

∂t
= k

∂2u

∂x2
+ f(x, t).
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This equation has two derivatives in space and one in time so that we need to specify

one initial conditions and boundary conditions at two different points to expect a unique

solution.

For example, if we specify the temperature at the two ends of the rod to be zero and the

initial temperature to be u0(x), we obtain the following initial-boundary value problem

(IBVP):

∂u

∂t
− k∂

2u

∂x2
= f(x, t), 0 < x < l, t > t0, (14)

u(x, t0) = u0(x), 0 < x < l,

u(0, t) = 0, t > t0,

u(l, t) = 0, t > t0.

Zero values of the unknown at the boundaries give rise to a so-called homogeneous Dirich-

let problem (non-zero values of the temperature at the ends of the rod constitute a inho-

mogeneous Dirichlet problem).

Of course we could have selected two nonzero temperatures at the ends of the rod, for ex-

ample u(0, t) = T0 and u(l, t) = Tl.

But the change u(x, t) = T0 + (Tl − T0)x/l + v(x, t) produces the same equation (14) for v

and now v = 0 at both x = 0, l.

There are other reasonable boundary conditions: fixed heat flux at the ends or Newton’s

law of cooling.

For instance, insulated ends mean that the heat flux is zero in them. Then Fourier’s law

says that we have to replace the boundary conditions by

∂u

∂x
(0, t) = 0, t > t0,

∂u

∂x
(l, t) = 0, t > t0. (15)

These conditions are known as zero-flux or homogeneous Neumann boundary condi-

tions (non-zero values of the heat flux at the ends of the rod constitute a inhomogeneous

Neumann problem).

Lastly, if the rod ends are open in a room at a lower temperature than the rod, the heat flows

from the rod towards the room at a rate that is proportional to the difference of temperature

with the room (Newton’s law of cooling).
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The resulting boundary conditions are

∂u

∂x
(0, t) = −h[u(0, t)− ur], t > t0,

∂u

∂x
(l, t) = h[u(l, t)− ur], t > t0, (16)

which are called inhomogeneous Robin (or mixed) boundary conditions.

If ur = 0, we have homogeneous Robin boundary conditions.

A. Fourier series method for the heat equation

1. Separation of variables for the homogeneous heat equation

We start by trying to solve the homogeneous heat equation (14) with f = 0.

To this end, we look for special solutions of the form

up(x, t) = X(x)T (t), (17)

that are products of functions of x and functions of t. We insert (17) into the homogeneous

heat equation
∂u

∂t
= k

∂2u

∂x2
=⇒ T ′(t)X(x) = T (t)X ′′(x),

and divide the result by up, thereby obtaining

T ′(t)

k T (t)
=
X ′′(x)

X(x)
. (18)

The left hand side of this equation is a function of t and the right hand side is a function of

x. Then both sides are equal to a constant (because taking an x derivative of the equation,

the left hand side gives zero and therefore the x derivative of X′′(x)
X(x)

is zero, therefore yielding

X′′(x)
X(x)

= −λ, a constant).

Then we get

X ′′(x) + λX(x) = 0, T ′(t) = −λk T (t). (19)

λ is called the separation constant.
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2. Eigenvalue problem for X(x)

The Dirichlet boundary conditions yield X(0) = 0 and X(l) = 0, so that the spatial function

X(x) satisfies the BVP:

X ′′(x) + λX(x) = 0, 0 < x < l, (20)

X(0) = 0, X(l) = 0.

Obviously X(x) = 0 is a solution of (20), but we are interested in knowing whether (20) has

nonzero solutions for some particular value of λ.

This is a typical eigenvalue problem : its nonzero solutions are called eigenfunctions

and the corresponding separation constants λ are the eigenvalues.

Assuming λ > 0, (20) has the general solution

X(x) = c1 cos(
√
λx) + c2 sin(

√
λx).

Substituting this into the first boundary condition, we get 0 = X(0) = c1. Then we find

X(x) = c2 sin(
√
λx) and the second boundary condition yields

c2 sin(l
√
λ) = 0 =⇒ l

√
λ = nπ, n = 1, 2, . . . . (21)

We have found the following pairs of eigenvalues and eigenfunctions for (20):

λn =
n2π2

l2
, Xn(x) = sin

nπx

l
, n = 1, 2, . . . . (22)

For each of these eigenvalues, the solution of the ODE for T in (19) is

Tn(t) = e−n
2π2kt/l2 . (23)

Are there any other eigenfunctions?

You can check that the only solution (20) has for λ ≤ 0 is X(x) = 0.

Now that we have found infinitely many particular solutions of the homogeneous heat equa-

tion with Dirichlet boundary conditions, we use the superposition principle to say that

u(x, t) =
∞∑
n=1

ane
−n2π2kt/l2 sin

nπx

l
, (24)

with constant coefficients an is a solution of the heat equation (whenever this series con-

verges) that satisfies the Dirichlet boundary conditions.
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To calculate the coefficients an, we use the initial condition in (20)

u0(x) = u(x, 0) =
∞∑
n=1

an sin
nπx

l
. (25)

Using the trigonometric integrals:∫ l

0

sin
nπx

l
sin

mπx

l
dx =

1

2

∫ l

0

[
cos

(m− n)πx

l
− cos

(m+ n)πx

l

]
dx

=
1

2

[
sin[(m− n)πx/l]

(m− n)π
− sin[(m+ n)πx/l]

(m+ n)π

]∣∣∣∣l
0

=
l

2
δmn =

l

2

 1 m = n,

0 m 6= n,
(26)

(25) produces the formula

an =
2

l

∫ l

0

u0(x) sin
nπx

l
dx. (27)

The condition (25) says that the eigenfunctions Xn(x) = sin(nπx/l) and Xm(x) =

sin(mπx/l) with n 6= m are orthogonal for the scalar product:

(f, g) =

∫ l

0

f(x)g(x) dx. (28)

Putting together (24) and (27), we find

u(x, t) =
∞∑
n=1

(
2

l

∫ l

0

u0(s) sin
nπs

l
ds

)
e−n

2π2kt/l2 sin
nπx

l
. (29)

There are several questions that we should be able to answer before we become satisfied

with the solution (29):

1. For which functions u0(x) does the Fourier sine series (25) with coefficients (27)

converge? What do we mean by convergence?

2. Is the Fourier sine series (29) a differentiable function that solves the IBVP (14) with

f = 0?

We will deal with these questions later. Here it suffices to say that, provided u0(x) = f(x)

is piecewise smooth (f(x) and f ′(x) are both continuous in (0, l) except in finitely many

points ξ where they have finite jump discontinuities, [f(ξ)] ≡ limε→0+[f(ξ + ε) − f(ξ −

ε)] 6= 0), the Fourier sine series converges to f(x) in all points where f(x) is continuous,

and it converges to the average value [f(x+) + f(x−)]/2 in points where f(x) has a jump

discontinuity.

This notion of pointwise convergence will be sufficient for our purposes in this course.

Be warned that there are other important notions of convergence that may be quite useful

in certain cases.
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3. Homogeneous heat equation with Neumann boundary conditions

If the boundary conditions are (15) (Neumann) instead of Dirichlet, a repetition of

the procedure followed to derive the eigenfunctions (22), yields the following eigenvalue-

eigenfunction pairs [2];

λn =
n2π2

l2
, Xn(x) = cos

nπx

l
, n = 0, 1, . . . , (30)

instead of (22).

This leads to the Fourier cosine series solution

u(x, t) =
1

l

∫ l

0

u0(s)ds+
∞∑
n=1

(
2

l

∫ l

0

u0(s) cos
nπs

l
ds

)
e−n

2π2kt/l2 cos
nπx

l
. (31)

Unlike in the case of Dirichlet boundary conditions, the temperature converges to the average

of the initial temperature profile and not to zero temperature: a thermally insulated rod

remembers some features of its initial temperature even after infinite time.

4. Homogeneous heat equation with periodic boundary conditions

Let us assume that we have a thin rod that is curved and closed as a ring with large radius.

The ring comprises the interval −l < x < l and we have to solve the homogeneous heat

equation with periodic boundary conditions:

∂u

∂t
= k

∂2u

∂x2
,

 u(−l, t) = u(l, t),

∂u
∂x

(−l, t) = ∂u
∂x

(l, t).
(32)

Now the eigenvalue problem is (20) with periodic boundary conditions as in (32). Inserting

the general solution of (20),

X(x) = c1 cos(
√
λx) + c2 sin(

√
λx),

in the periodic boundary conditions, we obtain

2c2 sin(l
√
λ) = 0, 2c1

√
λ sin(l

√
λ) = 0,

which produce the following eigenvalues and eigenfunctions:

λn =
n2π2

l2
, X(1)

n (x) = cos
nπx

l
, X(2)

n (x) = sin
nπx

l
, n = 0, 1, . . . . (33)
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Note that the eigenvalue λ0 = 0 has a single eigenfunction X0 = 1, whereas all the other

eigenvalues have two independent eigenfunctions associated to them, thereby having multi-

plicity two.

According to the superposition principle, the general solution of the homogeneous

heat equation is now

u(x, t) = a0 +
∞∑
n=1

an cos
nπx

l
e−n

2π2kt/l2 +
∞∑
n=1

bn sin
nπx

l
e−n

2π2kt/l2 . (34)

Using the orthogonality of the eigenfunctions

∫ l

−l
cos

nπx

l
cos

mπx

l
dx =


0 n 6= m

l n = m 6= 0

2l n = m = 0

(35)

∫ l

−l
sin

nπx

l
sin

mπx

l
dx =

 0 n 6= m

l n = m 6= 0
(36)

∫ l

−l
cos

nπx

l
sin

mπx

l
dx = 0, (37)

in the initial condition, we find the Fourier coefficients

a0 =
1

2l

∫ l

−l
u0(x)dx,

an =
1

l

∫ l

−l
u0(x) cos

nπx

l
dx, (38)

bn =
1

l

∫ l

−l
u0(x) sin

nπx

l
dx.

Equations (34) and (38) become

u(x, t) =
1

2l

∫ l

−l
u0(s)ds+

∞∑
n=1

{
e−n

2π2kt/l2
[(

1

l

∫ l

−l
u0(s) sin

nπs

l
ds

)
sin

nπx

l

+

(
1

l

∫ l

−l
u0(s) cos

nπs

l
ds

)
cos

nπx

l

]}
=

∫ l

−l

{
1

2l
+

1

l

∞∑
n=1

e−n
2π2kt/l2 cos

nπ(x− s)
l

}
u0(s) ds. (39)

As t→∞, u(x, t)→ (2l)−1
∫ l
−l u0(s)ds, which is the equilibrium temperature for the circular

rod: it is an average of the initial temperature distribution.

11



5. Inhomogeneous problems

Let us consider the inhomogeneous IBVP

∂u

∂t
− k∂

2u

∂x2
= f(x, t), 0 < x < l, t > t0, (40)

u(x, t0) = u0(x), 0 < x < l, (41)

u(0, t) = T0(t), t > t0, (42)

u(l, t) = T1(t), t > t0 (43)

Here we cannot separate variables. However, we can expand the solution in a

Fourier sine series (appropriate for Dirichlet boundary conditions) as:

u(x, t) =
∞∑
n=1

bn(t) sin
nπx

l
, (44)

where now we do not know its time dependence.

Note that the orthogonality of the sine functions give the formula

bn(t) =
2

l

∫ l

0

u(x, t) sin
nπx

l
dx, (45)

for the Fourier coefficients of the solution.

We now multiply (40) by (2/l) sin(nπx/l) and integrate the result from 0 to l, thereby

obtaining

dbn
dt
− 2k

l
sin

nπx

l

∂u

∂x
(x, t)

∣∣∣∣l
0

+
2nπk

l2
cos

nπx

l
u(x, t)

∣∣∣l
0

+
2kn2π2

l3

∫ l

0

u(x, t) sin
nπx

l
dx

=
2

l

∫ l

0

f(x, t) sin
nπx

l
dx,

after integrating twice by parts.

Using the boundary conditions (42) and (43) and the formula (45) in this equation, we find

the ODE:

dbn
dt

+
n2π2k

l2
bn =

2knπ

l2
[T0(t)− (−1)nT1(t)] + fn(t), fn(t) =

2

l

∫ l

0

f(x, t) sin
nπx

l
dx.(46)

This is a first-order linear ODE to be solved with the initial condition

bn(0) =
2

l

∫ l

0

u0(x, ) sin
nπx

l
dx. (47)

The solution of this IVP is

bn(t) = bn(0)e−n
2π2kt/l2 +

∫ t

0

{
2knπ

l2
[T0(s)− (−1)nT1(s)] + fn(s)

}
e−n

2π2k(t−s)/l2ds. (48)

Equations (44) and (48) are the solution of the IBVP (40)-(43) [2].
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B. Properties of Fourier series

Consider the Fourier series associated to a function f(x) on the interval (−1, 1):

f(x) ∼ a0 +
∞∑
n=1

[an cos(nπx) + bn sin(nπx)], (49)

where the coefficients are given by the usual formulas:

a0 =
1

2

∫ 1

−1

f(x)dx,

an =

∫ 1

−1

f(x) cos(nπx)dx, (50)

bn =

∫ 1

−1

f(x) sin(nπx)dx.

In (48), ∼ means that f(x) is on the left hand side and the Fourier series of f(x) (on the

interval −1 ≤ x ≤ 1) is on the right hand side (even if the series diverges) but the two

functions may be completely different. The symbol ∼ is read as “has the Fourier series

(on a given interval)”.

1. Fourier series in dimensional units

In dimensional units, the function f(x) is defined on an interval (−l, l).

Replacing x/l instead of x in (49) and (50), we obtain

f(x) ∼ a0 +
∞∑
n=1

[
an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
, (51)

with coefficients given by:

a0 =
1

2l

∫ l

−l
f(x)dx,

an =
1

l

∫ l

−l
f(x) cos

(nπx
l

)
dx, (52)

bn =
1

l

∫ l

−l
f(x) sin

(nπx
l

)
dx.

2. Pointwise convergence theorem

If f(x) is piecewise smooth on the interval −l ≤ x ≤ l, then the Fourier series of f(x)

converges
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1. to the periodic extension of f(x), where the periodic extension is continuous;

2. to the average of the two limits,

f(x+) + f(x−)

2
,

where the periodic extension has a jump discontinuity.

Here a piecewise smooth f(x) means that f and df/dx are both piecewise continuous,

i.e.:

(i) they are continuous at all but a finite number of points in (−l, l);

(ii) every discontinuity in (−l, l) is a jump discontinuity;

(iii) their limits as x→ −l+ and as x→ l− exist.

For a proof of the pointwise convergence theorem see chapter 9 of [1].

The following results are a direct consequence of the Fourier pointwise convergence theorem:

a) If f : (−l, l) → R is continuous and piecewise smooth, then its periodic extension is

continuous everywhere except (possibly) at the points ±l,±3l, . . ..

It follows that the Fourier series of f converges to f(x) for all −l < x < l.

b) If f : [−l, l] → R is continuous and piecewise smooth, and f(−l) = f(l), then its

periodic extension is continuous everywhere, and therefore the Fourier series of f

converges to f(x) for all −l ≤ x ≤ l.

c) If f : [0, l] → R is continuous and piecewise smooth, then fodd, the periodic exten-

sion of its odd extension, is continuous everywhere except (possibly) at the points

0,±l,±2l, . . ..

As a consequence, the Fourier sine series of f converges to f(x) for all 0 < x < l.

d) If f : [0, l] → R is continuous and piecewise smooth, and f(0) = f(l) = 0, then fodd

is continuous everywhere. Then the Fourier sine series of f converges to f(x) for all

0 ≤ x ≤ l.

e) If f : [0, l]→ R is continuous and piecewise smooth, then feven, the periodic extension

of its even extension, is continuous everywhere. Then the Fourier cosine series of f

converges to f(x) for all 0 ≤ x ≤ l.
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It can be proved that when the periodic extensions of a piecewise smooth f(x), or of its

even or odd extensions, are continuous, the corresponding Fourier series converge uniformly

to f , [1]. Then the Fourier series can be differentiated term by term and the resulting series

converges to f ′(x) whenever the derivative is continuous.

3. Sketching Fourier series

We can sketch Fourier series by drawing the corresponding periodic extensions and marking

with a cross the points at which the series converges at discontinuity points of the periodic

extension of f(x).

4. Term-by-term differentiation of Fourier series

If the periodic extension of a continuous function has a Fourier series with jump discontinu-

ities at the ends of the interval (−l, l), then it cannot be differentiated term by term.

To see why, take the Fourier series of f ′(x):

f ′(x) ∼ A0 +
∞∑
n=1

[
An cos

(nπx
l

)
+Bn sin

(nπx
l

)]
. (53)

The Fourier coefficients can be calculated by integration by parts using (52) to simplify the

result:

A0 =
1

2l

∫ l

−l
f ′(x)dx =

f(l)− f(−l)
2l

,

An =
1

l

∫ l

−l
f ′(x) cos

(nπx
l

)
dx =

f(l)− f(−l)
l

cos(nπ) + nπbn, (54)

Bn =
1

l

∫ l

−l
f ′(x) sin

(nπx
l

)
dx = −nπan.

Clearly we need f(−l) = f(l) for term-by-term differentiation to hold.

5. Term-by-term integration of Fourier series

We can integrate term by term the Fourier series of a piecewise smooth function f(x) and

the result is a convergent series that always converges to the integral of f(x) for −l ≤ x ≤ l
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even if the original Fourier series has jump discontinuities. The new series formed by term-

by-term integration is continuous, but it may not be a Fourier series.

See a proof of this statement in section 3.5 of [2].

III. SUPPLEMENTARY MATERIAL:

FINITE DIFFERENCE SOLUTION OF THE HEAT EQUATION

We want to find the numerical solution of the following Dirichlet problem in dimensional

units

∂u

∂t
= k

∂2u

∂x2
, 0 < x < l, t > 0, (55)

u(x, t0) = f(x), 0 < x < l,

u(0, t) = 0, t > 0,

u(l, t) = 0, t > 0.

This problem is quite simple and it is indifferent to rewrite it in dimensional units. Please

keep in mind that nondimensionalizing before solving numerically is a good idea [2].

A. Explicit scheme

The simplest numerical scheme consists of using forward differences in time and centered

differences in space:

∂u

∂t
(xj, tj) =

u(xj, tj + ∆t)− u(xj, tj)

∆t
− ∆t

2

∂2u

∂t2
(xj, t̃j), (56)

∂2u

∂x2
(xj, tj) =

u(xj + ∆x, tj) + u(xj −∆x, tj)− 2u(xj, tj)

(∆x)2
− (∆x)2

12

∂4u

∂x4
(x̃j, tj), (57)

where tj < t̃j < tj + ∆t, xj < x̃j < xj + ∆x, and we have discretized time and space

according to

0 = t0 < t1 = t0 + ∆t < . . . < tM = t0 +M∆t = T , and

0 = x0 < x1 = x0 + ∆x < . . . < xN = x0 +N∆x = l.

We now substitute (56) and (57) into (55), drop the error terms and use the notation

u(xj, tm) = Um
j (58)
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(indicating the temperature at the mesh point xj at time tm), in the result.

We obtain the following difference scheme:

Um+1
j = Um

j + r (Um
j+1 + Um

j−1 − 2Um
j ), (59)

U0
j = f(xj) ≡ fj (j = 1, . . . , N − 1), (60)

Um
0 = 0, Um

N = 0 (m = 1, . . . ,M − 1), (61)

in which r in the dimensionless parameter

r = k
∆t

(∆x)2
. (62)

The scheme (59) marches forward in time starting from the initial condition (60) and taking

into account the Dirichlet boundary conditions (61) at j = 0 and j = N .

To calculate the temperature at (xj, tm+1) we need the temperature at (xj, tm) and at the

adjacent nodes (xj−1, tm) and (xj+1, tm).

Clearly the domain of influence of a point (xj, tm) is a triangular region whose borders

expand at a numerical velocity

∆x

∆t
=

k∆x

r(∆x)2
=

k

r∆x
. (63)

As ∆x → 0, with fixed r, the numerical velocity approaches infinity which agrees with

the fact that the heat equation propagates disturbances with infinite velocity.

B. Stability analysis

The discrete scheme (59) can be solved by separation of variables

Um
j = eiαxRt/∆t = eiαj∆xRm. (64)

Inserting (64) into (59) and canceling eiαxRm, we get

R = 1 + r(eiα∆x + e−iα∆x − 2) = 1− 2r[1− cos(α∆x)] = 1− 4r sin2

(
α∆x

2

)
. (65)

We have used Euler’s formula: e±iω = cos(ω)± i sin(ω) , with ω ∈ R.

R is the same for positive or negative α. Thus a linear combination of e±iαx can be used as

a solution. The boundary condition Um
0 = 0 implies that sin(αx) is an appropriate solution

17



while Um
N = 0 implies α = nπ/l = nπ/(N∆x), n = 1, . . . , N − 1.

Then we find

Um
j = sin

nπx

l
Rm = sin

nπj

N
Rm, (66)

where R is given by (65), then:

Rn = 1− 2r

[
1− cos

(
nπ∆x

l

)]
= 1− 4r sin2

( nπ
2N

)
, (67)

with n = 1, . . . , N − 1 and n∆x = l.

The general solution is found by the superposition principle:

U
(m)
j =

N−1∑
n=1

βn sin
nπx

l
Rm
n , Rm

n =
[
1− 4r sin2

( nπ
2N

)]t/∆t
r =

k∆t

(∆x)2
. (68)

The coefficients βn are determined from the initial condition using the orthogonality of the

eigenfunctions.

On the other hand, if |R| < 1, the solution of the discrete scheme tends to zero as t → ∞

and we say that the numerical scheme is stable. Otherwise the scheme is unstable.

Clearly (67) implies that Rn ≤ 1, so we only have to check that Rn ≥ −1:

r ≤ 1

2 sin2 nπ
2N

, n = 1, . . . , N − 1. (69)

This condition is satisfied for all n provided

r ≤ 1

2
<

1

2 sin2 (N−1)π
2N

. (70)

For large N , we get r ≤ 1/2 anyway.

If r > 1/2, then some Rn may become smaller than -1 and the numerical solution will

contain a divergent oscillation, which is a numerical instability, and does not reflect the

behavior of the solution of the heat equation.

The numerical instability is characterized by an oscillation which is divergent in time, R <

−1, and is rapidly oscillatory (n = N − 1) in space.

The restriction r ≤ 1/2 becomes

∆t ≤ (∆x)2

2k
, (71)
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which is a practical constraint on numerical computations: the time steps cannot be-

come too large for otherwise the scheme becomes unstable.

If ∆x is sufficiently small, (71) implies a much smaller time step and the explicit finite

difference scheme (59) is quite expensive.

To minimize calculation time, it is a good idea to use r = 1/2, so that (59) becomes

Um+1
j =

Um
j+1 + Um

j−1

2
, (72)

and the temperature at time (m + 1)∆t is the average of the temperatures to the left and

right at the previous time m∆t.

Remark: Simplified stability analysis.

If we do not impose the boundary conditions, R ≥ −1 with R given by (65), yields

r ≤ 1

2 sin2(α∆x/2)
,

and the condition r ≤ 1/2 is again obtained.
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