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I. 2D LAPLACE EQUATION
A. 2D Laplace equation
1. Laplace equation for a rectangular region

Consider heat conduction in a 2D rectangular, R = [0, L] x [0, M], metal sheet without heat
sources and fixed temperature at the boundaries.

As t — o0, the temperature distribution is independent of time and, therefore, it is a
solution of the homogeneous Laplace equation with inhomogeneous Dirichlet boundary

conditions:
Vu =0, (1)
u(x,O) = Fl(x)v U(ZL‘, M) = FQ(:L‘)7 U(O’y) = Gl(y)’ U(L7y) = GQ(?J)' (2)

It is easy to solve this boundary value problem (BVP) using the superposition principle
and separation of variables.

Let us split the solution of this problem in four BVPs:

w(z,y) = Ur(z,y) + Us(z,y) + Us(z,y) + Us(z, y), (3)

where the functions Uj;, j = 1,2, 3,4, solve (1) with the boundary conditions:

Ui(z,0) = Fy(z), Ui(z,M)=0, U (0,y)=0, U (L,y)=0; (4)
Us(2,0) =0, Us(z, M) =F(z), U(0,y)=0, Us(L,y)=0; (5)
Us(x,0) =0, Us(z,M)=0, Us(0,y)=Gi(y), Us(L,y)=0; (6)
Ug(2,0) =0, Us(z,M)=0, Us0,y)=0, Us(L,y)= Ga(y). (7)
All these BVPs are solved in the same manner.
Separation of variables, U; = X (2)Y (y), yields
Y'(y)  X"(x
ST )

where A is the separation constant.

Then Dirichlet problem (4) produces the usual eigenvalue problem for the 1D Laplacian:

X"z)+ XX () =0, 0<z<L, (9)
X(0)=0, X(L)=0,
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whose solutions are

nr Xn(:v):sinn—zx, n=12,....

For each of these eigenvalues, the general solution of the ODE for Y in (8) is
Y. (y) = a, €™V 4 b e/

Using the boundary condition U, (z, M) = 0, we find Y, (M) = 0, so that

neM/L |y =M/ _ ()

ane

Then we have

mn(y — M
V) = e sint =),
where a, = 1c,e "™M/L b, = —Lc,enmM/L,
Superposition then gives the Fourier sine series
> n - M nmwx
U1(9Ca?/):2:cnsinh7T (yL )Sin 7; ,
n=1

with constant coefficients ¢, to be calculated so that

M S M
Fi(z) = Uy(x,0) chsmh ) n —chsinhmz sin oL

L L

Then using the orthogonality property of the Fourier sine series, we find

2 L nmwx
= Fy () sin 22 d,
‘ Lsinh(mrM/L)/o (@) sin L
and therefore
fo s)sin®Pds  an(M —y) . nmx
h .
Z smh mrM/L) S L "I

The other parts of the solution are similarly calculated, thereby producing the results:

Z fo ) sin T ds sinh W g, T
in in
smh ntM/L) L L’
fo ) sin 22 ds (L —x) . nmy
g h
smh(mr ) sinh == s
fo Ga(s) sin “2ds ™mT . nmwy
h .
Z Smh(nrLAl) B Rr S

(10)

(11)

(12)

(13)

(14)

(16)

(17)

(18)

(19)



2. Laplace equation for a circular disk

Consider now the Laplace equation for a circular disk with known temperature at the border

rT=a:

*u  10u 1 0%u

2
= — —_— T = 2
Vu=ge o Trae =0 (20)
u(a,0) = f(0), —-m<0<m. (21)
Separation of variables in the form:
u(r, 0) = R(r)O(0), (22)

yields the following equations when inserted into (20):

PR'(r) +rR(r) _ ©"(9)

R(r)\ | R(r)
0 /! 2 9 — — — )\ 2
@()(R(r)+ . )+ 7GQG)() 0= R0 o0) . (23)
where A is the separation constant.
Thus we find the eigenvalue problem
0"(0) + \6(0) = 0, (24)
O(—7) =0(n), ©O'(-m)=806'(n). (25)
The solutions of this eigenvalue problem are
A =n% n=0,1,..., (26)
OW(h) = cosnb, ©P(0) =sinnd, (27)
The radial part R, (r) obeys the equation:
d*R, dR,
g Tt R =0, (28)

This is an Euler equation to be solved assuming R,, = r?, so that ¢(¢ — 1) + ¢ —n* =0,
which gives ¢? = n? for n # 0, thereby yielding ¢ = £n. Then R,, = a,r™ + b,r~".
Forn =0, 0=rR{+ Ry = (rR;)’. This gives rR) = by = Ro(r) = by [ dr/r = bylnr + ay.
We have found

" + byr™™ n #£ 0,

Ry (r) = (29)
ag+bplnr, n=0.



At the center of the disk, the temperature should be finite, so that the condition |R,,(0)| < co
implies b, = 0.
Then the superposition principle yields

u(r,0) = ag + Z " (a, cosnf + by, sinnf). (30)

The boundary condition (21) gives

/ f(0)do, for n # 0 and (31)

a, = / f(8) cosnbdo, (32)
mTa”

b, = / f(0) sinnddb. (33)
Ta”

Then (30)-(33) produce

- / (cos b’ cosnb + sinnf’ sin nd)de’

1 " / / - 7»”

ur6) = 5 [ 5@+ >
- n=1

1 B / / - Tn

_ %/_Ff(e)de +;mn

Note that (r/a)"cos[n(f — @')] is the real part of (re®?)/a)" and that we can sum the

/_7r f(0") cos[n(6 — 0")]db’. (34)

geometric progression

Mg

( Lil0— e)) 1 1
a 1 —reil®=9) /q

n=1

Then (34) can be written as

11 1 ,
u(r,0) = ;/Tr (6" _—5 + Re T a0 /s rei(e—e')/a} do
| ! 1 —Zcos(0 —0) ,
= _/ f(@) _5 + o a2 2 200 o do
T J n (1 —Lcos(d —0))? + L sin*(0 — ¢')

S A 1 1 —Zcos(0 —¢)
= ;/ﬂf(e) _——JF

/

2 1-Zcos(0-0)+5

2

1" 1-5
= — / F(0) a” db,
2 J_, 1—2cos(0—0)+ 5

ie.,

u(r 0) = — / ’ (a® — ) f(0) N (35)

21 ) a? — 2ar cos(6 — 6) + r?

which is the Poisson formula.



3. Qualitative properties of the Laplace equation

As a consequence of the Poisson formula (35) or of (30) and (31), we find

1

U(T ) ) Qo 27a

/ a2 (36)

The temperature at the center of a disk of radius a is equal to the average value
of the temperature at the edges of the disk.

Consider now a region R, an interior point p and a circle of radius a and center p entirely
contained in R. The previous analysis holds and therefore the solution of the Laplace
equation at the point p € R is equal to the average of the solution along any
circle of radius a lying inside R centered at that point.

This is the mean value theorem for the Laplace equation.

We can use the mean value theorem to prove that the solution of the Laplace equation
inside a finite region R attain its maximum and minimum values on the boundary
of R unless the solution is constant everywhere.

These are the maxzimum and minimum principles for the Laplace equation.

We can do the proof of these principles by contradiction:

Suppose that the maximum value is attained at an interior point p. Due to the mean
value theorem, this value is the average of the solution along the edges of any interior circle
centered at p. But this is not possible unless the solution is a constant.

Suppose now that we vary the boundary data of the BVP:
V2u =0 with u= f(2)for z € OR, (37)
from the function f to a close function g:
V2 =0 withv = g(z)for z € OR. (38)
Consider now w = u — v, so that
Viw =0 with w(z) = f(z) — g(z) for x € IR. (39)
According to the maximum and the minimum principles, we get

min[f(z) — g(z)] <w(z) < max[f(z) - g(z)]. (40)



Thus if the difference between f and g on OR is everywhere small, so is the difference be-
tween the solutions of the corresponding BVPs.

That the solution of the Laplace equation is unique follows from (40): if u and v
are two different solutions corresponding to the same boundary data, f = g, (40) yields
0 < w < 0 everywhere in R. Thus, if the solution of the Laplace equation exists, it is unique
and it depends continuously on the solution specified at the boundary.

We then say that Laplace equation with u specified on the boundary is a well-posed prob-

lem.

B. Supplementary material: Poisson equation

Let us consider the Poisson equation on a rectangle 2 = (0.L) x (0, M) with inhomogeneous

boundary conditions:

Viu=Q(z), z¢cQ, (41)
u=oaz), zeoill (42)

We assume that the source terms Q(z) and «(z) are continuous with continuous first deriva-

tives on €2 and 0f2, respectively.

1. Solution by 2D eigenfunction expansions

We will use the eigenfunctions of the Laplacian operator:

Vi = =Ny, z €, (43)
¢i(z) =0, z €. (44)

These eigenfunctions for the rectangle Q = (0, L) x (0, M) are

¢i(z) = sin ? sin %, (45)
2 2

nom=12,..., i=(n,m), Ai:WQ(%—l—%). (46)

We now multiply (41) by ¢; and integrate over 2. The result is
[oa=[ovtu= [0+ V- (65u-uva)) = -\ [us, - fun-Vo,
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in which n is the unit outer normal to the rectangle and we have used the identity vV?u —

uV? =V - (vVu — uVv), (43) and (44). Using now (42), we obtain

/u@' = _f¢iQ il f,aﬂ ' v¢i. (47)

If we expand the solution of (41)-(42) as u(x) = >, u;¢;(x), the coefficients u; are

o fUCbz‘ B f(biQ‘l'fOéﬂ'ngi'

I K 9
In the case of the rectangle with boundary conditions,
’Fl(a:, y=0, 0<z<L, n=-(0,1),
Fy n
ule,y) = (49)

Q

)

(), y=M, 0<z <L, n=(0,1),
1(y), =0, 0<y< M, n=—(1,0),
2(y), =L, 0<y< M, n=(1,0),

@

this general formula becomes

u(z,y) = Z Zun m Sin @ sin Y (50)

M 7
n=1 m=1
_ ﬂ mny
Up,m = (n2M2—|—m2L2 / / Q(z',y) sin sin A dxdy
m . nmx
* (712]\42 m2L2 / —U" (e )]sde:r;
" . mmy
* (7’L2M2+7’/12L2 / —1)"Galy)]sin M @y
_ Qnm + M_m Fl o ( 1)mF2 n] %[Glym - (_1)nGz7m] (51>
EdCEES (% + i)

Note that the outer normal determines the sign of the corresponding contribution to

§ an-V¢; as written in (51). The latter formula holds assuming that the source term Q(z, y)
is continuous and that the boundary terms have continuous first derivatives and are zero at
the intersection points t =0, z = L, y = 0 and y = M (so that the odd periodic extensions

of the Fi(z) and G;(y), with i = 1,2, are continuous at the corners of the rectangle).

2. Solution by 1D eigenfunctions

Let us solve the Poisson equation with homogeneous Dirichlet boundary conditions on the

rectangle by a different method.



We use the 1D eigenfunction expansion

u(z,y) = ZBn(y) sin %, (52)

where the sine coefficients B, (y) are functions of y.

Differentiating (52) with respect to y and substituting this into the Poisson equation, we get

= /d®B, n%n? . nmx
Z(dgﬂ 7 Bn>smT:Q. (53)

n=1
We have differentiated term by term because the boundary conditions are homogeneous.

Thus the sine coefficients satisfy the inhomogeneous ODE:

d*B, n’r? 2 [* . NTX
B [ Qe = Qi) oY

The homogeneous Dirichlet boundary conditions for u produce the following boundary con-

ditions for B, (y): B,(0) =0 and B,,(M) = 0. The solution of this BVP is

L . onm(M —y) /y ., NI
B, = — h " h—d
) n sinh —””LM [sm L 0 @n() sin L 77
M
M _
+ sinh 7Y / On(y)sinh PEM =) | (55)
L J, L



[1] R. Haberman, Elementary applied partial differential equations. 3rd ed. Prentice Hall, 1998.
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