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I. 2D LAPLACE EQUATION

A. 2D Laplace equation

1. Laplace equation for a rectangular region

Consider heat conduction in a 2D rectangular, R = [0, L]× [0,M ], metal sheet without heat

sources and fixed temperature at the boundaries.

As t → ∞, the temperature distribution is independent of time and, therefore, it is a

solution of the homogeneous Laplace equation with inhomogeneous Dirichlet boundary

conditions:

∇2u = 0, (1)

u(x, 0) = F1(x), u(x,M) = F2(x), u(0, y) = G1(y), u(L, y) = G2(y). (2)

It is easy to solve this boundary value problem (BVP) using the superposition principle

and separation of variables.

Let us split the solution of this problem in four BVPs:

u(x, y) = U1(x, y) + U2(x, y) + U3(x, y) + U4(x, y), (3)

where the functions Uj, j = 1, 2, 3, 4 , solve (1) with the boundary conditions:

U1(x, 0) = F1(x), U1(x,M) = 0, U1(0, y) = 0, U1(L, y) = 0; (4)

U2(x, 0) = 0, U2(x,M) = F2(x), U2(0, y) = 0, U2(L, y) = 0; (5)

U3(x, 0) = 0, U3(x,M) = 0, U3(0, y) = G1(y), U3(L, y) = 0; (6)

U4(x, 0) = 0, U4(x,M) = 0, U4(0, y) = 0, U4(L, y) = G2(y). (7)

All these BVPs are solved in the same manner.

Separation of variables, Uj = X(x)Y (y), yields

−Y
′′(y)

Y (y)
=
X ′′(x)

X(x)
= −λ, (8)

where λ is the separation constant.

Then Dirichlet problem (4) produces the usual eigenvalue problem for the 1D Laplacian:

X ′′(x) + λX(x) = 0, 0 < x < L, (9)

X(0) = 0, X(L) = 0,
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whose solutions are

λn =
n2π2

L2
, Xn(x) = sin

nπx

L
, n = 1, 2, . . . . (10)

For each of these eigenvalues, the general solution of the ODE for Y in (8) is

Yn(y) = ane
πny/L + bne

−πny/L. (11)

Using the boundary condition U1(x,M) = 0, we find Yn(M) = 0, so that

ane
nπM/L + bne

−nπM/L = 0.

Then we have

Yn(y) = cn sinh
πn(y −M)

L
, (12)

where an = 1
2
cne
−nπM/L, bn = −1

2
cne

nπM/L.

Superposition then gives the Fourier sine series

U1(x, y) =
∞∑
n=1

cn sinh
πn(y −M)

L
sin

nπx

L
, (13)

with constant coefficients cn to be calculated so that

F1(x) = U1(x, 0) =
∞∑
n=1

cn sinh
πn(−M)

L
sin

nπx

L
= −

∞∑
n=1

cn sinh
πnM

L
sin

nπx

L
. (14)

Then using the orthogonality property of the Fourier sine series, we find

cn = − 2

L sinh(nπM/L)

∫ L

0

F1(x) sin
nπx

L
dx, (15)

and therefore

U1(x, y) =
2

L

∞∑
n=1

∫ L
0
F1(s) sin nπs

L
ds

sinh(nπM/L)
sinh

πn(M − y)

L
sin

nπx

L
. (16)

The other parts of the solution are similarly calculated, thereby producing the results:

U2(x, y) =
2

L

∞∑
n=1

∫ L
0
F2(s) sin nπs

L
ds

sinh(nπM/L)
sinh

πny

L
sin

nπx

L
, (17)

U3(x, y) =
2

M

∞∑
n=1

∫M
0
G1(s) sin nπs

M
ds

sinh(nπL/M)
sinh

πn(L− x)

M
sin

nπy

M
, (18)

U4(x, y) =
2

M

∞∑
n=1

∫M
0
G2(s) sin nπs

M
ds

sinh(nπL/M)
sinh

πnx

M
sin

nπy

M
. (19)
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2. Laplace equation for a circular disk

Consider now the Laplace equation for a circular disk with known temperature at the border

r = a:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0, (20)

u(a, θ) = f(θ), −π ≤ θ ≤ π. (21)

Separation of variables in the form:

u(r, θ) = R(r)Θ(θ), (22)

yields the following equations when inserted into (20):

Θ(θ)

(
R′′(r) +

R′(r)

r

)
+
R(r)

r2
Θ′′(θ) = 0 =⇒ r2R′′(r) + rR′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
= λ, (23)

where λ is the separation constant.

Thus we find the eigenvalue problem

Θ′′(θ) + λΘ(θ) = 0, (24)

Θ(−π) = Θ(π), Θ′(−π) = Θ′(π). (25)

The solutions of this eigenvalue problem are

λn = n2, n = 0, 1, . . . , (26)

Θ(1)
n (θ) = cosnθ, Θ(2)

n (θ) = sinnθ, (27)

The radial part Rn(r) obeys the equation:

r2
d2Rn

dr2
+ r

dRn

dr
− n2Rn = 0. (28)

This is an Euler equation to be solved assuming Rn = rq, so that q(q − 1) + q − n2 = 0,

which gives q2 = n2 for n 6= 0, thereby yielding q = ±n. Then Rn = anr
n + bnr

−n.

For n = 0, 0 = rR′′0 +R′0 = (rR′0)
′. This gives rR′0 = b0 =⇒ R0(r) = b0

∫
dr/r = b0 ln r+ a0.

We have found

Rn(r) =

 anr
n + bnr

−n, n 6= 0,

a0 + b0 ln r, n = 0.
(29)
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At the center of the disk, the temperature should be finite, so that the condition |Rn(0)| <∞

implies bn = 0.

Then the superposition principle yields

u(r, θ) = a0 +
∞∑
n=1

rn(an cosnθ + bn sinnθ). (30)

The boundary condition (21) gives

a0 =
1

2π

∫ π

−π
f(θ)dθ, for n 6= 0 and (31)

an =
1

πan

∫ π

−π
f(θ) cosnθdθ, (32)

bn =
1

πan

∫ π

−π
f(θ) sinnθdθ. (33)

Then (30)-(33) produce

u(r, θ) =
1

2π

∫ π

−π
f(θ′)dθ′ +

∞∑
n=1

rn

πan

∫ π

−π
(cosnθ′ cosnθ + sinnθ′ sinnθ)dθ′

=
1

2π

∫ π

−π
f(θ′)dθ′ +

∞∑
n=1

rn

πan

∫ π

−π
f(θ′) cos[n(θ − θ′)]dθ′. (34)

Note that (r/a)n cos[n(θ − θ′)] is the real part of (rei(θ−θ
′)/a)n and that we can sum the

geometric progression

∞∑
n=1

(r
a
ei(θ−θ

′)
)n

=
1

1− rei(θ−θ′)/a
− 1.

Then (34) can be written as

u(r, θ) =
1

π

∫ π

−π
f(θ′)

[
−1

2
+ Re

1

1− rei(θ−θ′)/a

]
dθ′

=
1

π

∫ π

−π
f(θ′)

[
−1

2
+

1− r
a

cos(θ − θ′)
(1− r

a
cos(θ − θ′))2 + r2

a2
sin2(θ − θ′)

]
dθ′

=
1

π

∫ π

−π
f(θ′)

[
−1

2
+

1− r
a

cos(θ − θ′)
1− 2r

a
cos(θ − θ′) + r2

a2

]
dθ′

=
1

2π

∫ π

−π
f(θ′)

1− r2

a2

1− 2r
a

cos(θ − θ′) + r2

a2

dθ′,

i.e.,

u(r, θ) =
1

2π

∫ π

−π

(a2 − r2)f(θ′)

a2 − 2ar cos(θ − θ′) + r2
dθ′, (35)

which is the Poisson formula.
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3. Qualitative properties of the Laplace equation

As a consequence of the Poisson formula (35) or of (30) and (31), we find

u(r = 0, θ) = a0 =
1

2πa

∫ π

−π
f(θ′)adθ′. (36)

The temperature at the center of a disk of radius a is equal to the average value

of the temperature at the edges of the disk.

Consider now a region R, an interior point p and a circle of radius a and center p entirely

contained in R. The previous analysis holds and therefore the solution of the Laplace

equation at the point p ∈ R is equal to the average of the solution along any

circle of radius a lying inside R centered at that point.

This is the mean value theorem for the Laplace equation.

We can use the mean value theorem to prove that the solution of the Laplace equation

inside a finite region R attain its maximum and minimum values on the boundary

of R unless the solution is constant everywhere.

These are the maximum and minimum principles for the Laplace equation.

We can do the proof of these principles by contradiction:

Suppose that the maximum value is attained at an interior point p̃. Due to the mean

value theorem, this value is the average of the solution along the edges of any interior circle

centered at p̃. But this is not possible unless the solution is a constant.

Suppose now that we vary the boundary data of the BVP:

∇2u = 0 with u = f(x) for x ∈ ∂R, (37)

from the function f to a close function g:

∇2v = 0 with v = g(x) for x ∈ ∂R. (38)

Consider now ω = u− v, so that

∇2ω = 0 with ω(x) = f(x)− g(x) for x ∈ ∂R. (39)

According to the maximum and the minimum principles, we get

min[f(x)− g(x)] ≤ ω(x) ≤ max[f(x)− g(x)]. (40)
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Thus if the difference between f and g on ∂R is everywhere small, so is the difference be-

tween the solutions of the corresponding BVPs.

That the solution of the Laplace equation is unique follows from (40): if u and v

are two different solutions corresponding to the same boundary data, f = g, (40) yields

0 ≤ w ≤ 0 everywhere in R. Thus, if the solution of the Laplace equation exists, it is unique

and it depends continuously on the solution specified at the boundary.

We then say that Laplace equation with u specified on the boundary is a well-posed prob-

lem.

B. Supplementary material: Poisson equation

Let us consider the Poisson equation on a rectangle Ω = (0.L)× (0,M) with inhomogeneous

boundary conditions:

∇2u = Q(x), x ∈ Ω, (41)

u = α(x), x ∈ ∂Ω. (42)

We assume that the source terms Q(x) and α(x) are continuous with continuous first deriva-

tives on Ω and ∂Ω, respectively.

1. Solution by 2D eigenfunction expansions

We will use the eigenfunctions of the Laplacian operator:

∇2φi = −λiφi, x ∈ Ω, (43)

φi(x) = 0, x ∈ ∂Ω. (44)

These eigenfunctions for the rectangle Ω = (0, L)× (0,M) are

φi(x) = sin
nπx

L
sin

mπy

M
, (45)

n,m = 1, 2, . . . , i = (n,m), λi = π2

(
n2

L2
+
m2

M2

)
. (46)

We now multiply (41) by φi and integrate over Ω. The result is∫
φiQ =

∫
φi∇2u =

∫
[u∇2φi +∇ · (φi∇u− u∇φi)] = −λi

∫
uφi −

∮
un · ∇φi,
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in which n is the unit outer normal to the rectangle and we have used the identity v∇2u−

u∇2v = ∇ · (v∇u− u∇v), (43) and (44). Using now (42), we obtain∫
uφi = −

∫
φiQ+

∮
αn · ∇φi

λi
. (47)

If we expand the solution of (41)-(42) as u(x) =
∑

i uiφi(x), the coefficients ui are

ui =

∫
uφi∫
φ2
i

= −
∫
φiQ+

∮
αn · ∇φi

λi
∫
φ2
i

. (48)

In the case of the rectangle with boundary conditions,

u(x, y) =



F1(x), y = 0, 0 < x < L, n = −(0, 1),

F2(x), y = M, 0 < x < L, n = (0, 1),

G1(y), x = 0, 0 < y < M, n = −(1, 0),

G2(y), x = L, 0 < y < M, n = (1, 0),

(49)

this general formula becomes

u(x, y) =
∞∑
n=1

∞∑
m=1

un,m sin
nπx

L
sin

mπy

M
, (50)

un,m = − 4LM

π2(n2M2 +m2L2)

∫ L

0

∫ M

0

Q(x′, y′) sin
nπx

L
sin

mπy

M
dxdy

+
4mL

π(n2M2 +m2L2)

∫ L

0

[F1(x)− (−1)mF2(x)] sin
nπx

L
dx

+
4nM

π(n2M2 +m2L2)

∫ M

0

[G1(y)− (−1)nG2(y)] sin
mπy

M
dy

= − Qnm

π2
(
n2

L2 + m2

M2

)+
2m
M2 [F1,n − (−1)mF2,n] + 2n

L2 [G1,m − (−1)nG2,m]

π
(
n2

L2 + m2

M2

) . (51)

Note that the outer normal determines the sign of the corresponding contribution to∮
αn·∇φi as written in (51). The latter formula holds assuming that the source term Q(x, y)

is continuous and that the boundary terms have continuous first derivatives and are zero at

the intersection points x = 0, x = L, y = 0 and y = M (so that the odd periodic extensions

of the Fi(x) and Gi(y), with i = 1, 2, are continuous at the corners of the rectangle).

2. Solution by 1D eigenfunctions

Let us solve the Poisson equation with homogeneous Dirichlet boundary conditions on the

rectangle by a different method.
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We use the 1D eigenfunction expansion

u(x, y) =
∞∑
n=1

Bn(y) sin
nπx

L
, (52)

where the sine coefficients Bn(y) are functions of y.

Differentiating (52) with respect to y and substituting this into the Poisson equation, we get

∞∑
n=1

(
d2Bn

dy2
− n2π2

L2
Bn

)
sin

nπx

L
= Q. (53)

We have differentiated term by term because the boundary conditions are homogeneous.

Thus the sine coefficients satisfy the inhomogeneous ODE:

d2Bn

dy2
− n2π2

L2
Bn =

2

L

∫ L

0

Q(x, y) sin
nπx

L
dx ≡ Qn(y). (54)

The homogeneous Dirichlet boundary conditions for u produce the following boundary con-

ditions for Bn(y): Bn(0) = 0 and Bn(M) = 0. The solution of this BVP is

Bn(y) = − L

nπ sinh nπM
L

[
sinh

nπ(M − y)

L

∫ y

0

Qn(η) sinh
nπη

L
dη

+ sinh
nπy

L

∫ M

y

Qn(y) sinh
nπ(M − η)

L
dη

]
. (55)
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