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Problem 1 Solve the following differential equation:

y′ + y = 2e−x + x2

Problem 2 Solve the following differential equation:

y′ +
1

x
y = x2 − 1 , x > 0

Problem 3 Solve the following differential equation:

y′ + y cosx = sinx cosx

Problem 4 Solve the following differential equation:

y′ = x2/y

Problem 5 Solve the following differential equation:

y′ =
x2

y(1 + x3)



Problem 6 Solve the following differential equation:

y′ + y2 sinx = 0

Problem 7 Solve the initial value problem (IVP):

(IVP)

{
(1− x)(1− y)y′ = α ∈ R
y(0) = 0

.

Problem 8 Solve the following differential equation:

x3 + xy2 + (x2y + y3)y′ = 0

Problem 9 Solve the following differential equation:

ey +
(
xey + 2y

)
y′ = 0

Problem 10 Solve the following differential equation:

y2exy + cosx+
(
exy + xyexy

)
y′ = 0

Problem 11 Solve the following differential equation:

y′ = (2x+ y)/(x− y)

Problem 12 Solve the following differential equation:

y′ = (x2 + 3y2)/2xy

Problem 13 Solve the following differential equation:

y′ = (y +
√
x2 − y2)/x



Problem 14 Consider the following initial value problem (IVP){
2ty + (t2 + y) y′ = 0 , 0 < t ≤ 1 ,

y(0) = −2 .

(i) Classify the given differential equation and prove that y(t) = −t2 −
√
t4 + 4 is the solution

of the IVP.

(ii) Express the differential equation in the form y′ = f(t, y) and consider the numerical scheme

Yn+1 = Yn +
h

2

(
f(tn+1, Ỹn+1) + f(tn, Yn)

)
, with Ỹn+1 = Yn + hf(tn, Yn) .

Prove that Y1 = 4/(h2 − 2) for any step h. In addition, approximate y(1) using the given
scheme with h1 = 0.5.

(iii) Estimate the order of the numerical method, knowing that Y h2
10 = −3.239 is an approximation

of y(1) calculated with h2 = 0.1.

Problem 15 Consider the following initial value problem (IVP){
y′ + ky = k sin t+ cos t
y(0) = 1

for t ≥ 0 , where k is a positive real parameter.

(a) Classify the differential equation of the IVP and calculate its solution.

(b) Take k = 3 in the IVP and find an approximated value of y(π/4) by applying the method of
explicit Euler with step h = π/4. Then, compare the result with that obtained considering
the exact solution y(t) = sin t+ e−3t .

(c) Is the approximation obtained in (b) with step h = π/4 acceptable? If yes, justify your
answer. If no, find an upper bound for h yielding an acceptable approximation of y(π/4).



Problem 16 Solve the following initial value problem, writing the solution in explicit form.

 (1− lnx) y′ = 1 + lnx+
y

x
, for 0 < x < e ,

y(1) = 1 .

Problem 17 Consider the following initial value problem{
y′ + y = 2 t2

y(0) = 5 .

(i) Verify that y(t) = e−t + 2 t2 − 4 t+ 4 is the exact solution.

(ii) Use the following Runge-Kutta method

Yn+1 = Yn +
1

2
(K1 + K2 ) , with K1 = h f(tn, Yn) , K2 = h f(tn+1, Yn +K1) ,

for n = 0, 1, 2, . . . , to approximate the value y(0.2) with h = h1 = 0.1 .

(iii) Knowing that Y h2
20 = 4.09875 is an approximation of y(0.2) calculated with h = h2 = 0.01 ,

estimate the order of the numerical method in (ii).

Problem 18 Consider the differential equation xy2y′ + x3 = y3 , with 0 < x < 2 .

(a) Classify it, justifying your answer.

(b) Solve it together with the condition y(1) = 2 .



Problem 19 Consider the following initial value problem{
y′ + 6 y = 0

y(0) = 1 .

(a) Apply to the problem one iteration of the explicit Euler method with step h1 = 0.05. Then,
say whether the method is stable with the suggested step.

(b) Use the value Y1 computed in (a) and the following Adams–Moulton method of order 2

Yn+2 = Yn+1 +
h

2

[
f(tn+1, Yn+1) + f(tn+2, Yn+2)

]
,

for n = 0, 1, 2, . . . , to approximate the value y(0.1) with h = h1 = 0.05.

(c) Knowing that Eh2
t=0.1 = 0.00112 is the error of approximating y(0.1) using the method in (b)

with step h2 = h1/q, calculate the value of h2 (note that y(0.1) = 0.54881 and q ∈ N is the
step reduction factor).

Problem 20 Can you use the explicit Euler method to solve approximately the initial value prob-
lem: y′ = 1 + y2 in x ∈ [0, 3], with y(0) = 0? Hint: Find the exact solution and discuss.

Problem 21 A new European football league is planned so that the yearly sales of tickets grow
at a speed proportional to the difference between sales at time t and a higher bound of 300 million
euros. Assume no ticket has been sold at t = 0 and that sales should be 40 million euro after 3
years (otherwise the competition is cancelled). Based on this assumption, how long it should take
for the yearly ticket sales to have reached 220 million euro?

Problem 22 The population of a large cluster of atoms decreases to one third its initial size in one
year, at a rate proportional to the instantaneous number of atoms. (a) Model the evolution of the
atom population by means of a differential equation and calculate its growth rate proportionality
constant r. (b) Use the explicit Euler method to solve the ODE and indicate the maximum step
size for which the Euler scheme is stable.

Problem 23 Given the Ordinary Differential Equation (ODE):

y′ = ex+y with x > 0,

i) Classify this ODE.

ii) Solve the ODE with initial condition y(1) = 1.



Problem 24 A cauldron of boiling soup is placed in a room at 0oC and its temperature becomes
20oC after 30 minutes. (a) Model the evolution of the soup temperature by means of a differential
equation (Newton cooling law) and calculate the cooling rate proportionality constant −r. (b) Use
the explicit Euler method to solve the ODE and indicate the maximum step size for which the
Euler scheme is stable.


