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Problem 1 Solve the following differential equation:

y′ + y = 2e−x + x2

SOLUTION:
The equation is a linear first-order ODE.
Solution:

y(x) = (c+ 2x)e−x + x2 − 2x+ 2 ; c ∈ R.

Problem 2 Solve the following differential equation:

y′ +
1

x
y = x2 − 1 , x > 0

SOLUTION:
The equation is a linear first-order ODE.
Solution:

y(x) =
c

x
+
x3

4
− x

2
; c ∈ R.

Problem 3 Solve the following differential equation:

y′ + y cosx = sinx cosx

SOLUTION:
The equation is a linear first-order ODE.
Solution:

y(x) = ce− sinx + sinx− 1 ; c ∈ R.



Problem 4 Solve the following differential equation:

y′ = x2/y

SOLUTION:
The equation is a separable first-order ODE.
Implicit solution:

y2(x) =
2x3

3
+ c ; c ∈ R.

Problem 5 Solve the following differential equation:

y′ =
x2

y(1 + x3)

SOLUTION:
The equation is a separable first-order ODE.
Implicit solution:

y2(x) =
2

3
ln(1 + x3) + c ; c ∈ R.

Problem 6 Solve the following differential equation:

y′ + y2 sinx = 0

SOLUTION:
The equation is a separable first-order ODE.
Explicit solution:

y(x) =
1

c− cosx
; c ∈ R.

Problem 7 Solve the initial value problem (IVP):

(IVP)

{
(1− x)(1− y)y′ = α ∈ R
y(0) = 0

.

SOLUTION:
The equation is a separable first-order ODE.
Using the initial condition we get the implicit solution:

y(x)− y2(x)

2
+ α ln |1− x| = 0 .

Problem 8 Solve the following differential equation:

x3 + xy2 + (x2y + y3)y′ = 0



SOLUTION:
The equation is a exact first-order ODE.
Implicit solution:

x4 + y4(x) + 2x2y2(x) = c ; c ∈ R.

Problem 9 Solve the following differential equation:

ey +
(
xey + 2y

)
y′ = 0

SOLUTION:
The equation is a exact first-order ODE.
Implicit solution:

x4 + y4(x) + 2x2y2(x) = c ; c ∈ R.

Problem 10 Solve the following differential equation:

y2exy + cosx+
(
exy + xyexy

)
y′ = 0

SOLUTION:
The equation is a exact first-order ODE.
Implicit solution:

xey(x) + y2(x) = c ; c ∈ R.

Problem 11 Solve the following differential equation:

y′ = (2x+ y)/(x− y)

SOLUTION:
The equation is a homogeneous first-order ODE.
Implicit solution:

√
2

2
arctan

(√
2y(x)

2x

)
− 1

2
ln

(
2 +

y2(x)

x2

)
= ln |x|+ c ; c ∈ R.

Problem 12 Solve the following differential equation:

y′ = (x2 + 3y2)/2xy

SOLUTION:
The equation is a homogeneous first-order ODE.
Implicit solution:

1 +
y2(x)

x2
= c |x| ; c ∈ R.



Problem 13 Solve the following differential equation:

y′ = (y +
√
x2 − y2)/x

SOLUTION:
The equation is a homogeneous first-order ODE.
Implicit solution:

y(x) = x sin(ln |x|+ c) ; c ∈ R.

Problem 14 Consider the following initial value problem (IVP){
2ty + (t2 + y) y′ = 0 , 0 < t ≤ 1 ,

y(0) = −2 .

(i) Classify the given differential equation and prove that y(t) = −t2 −
√
t4 + 4 is the solution

of the IVP.

(ii) Express the differential equation in the form y′ = f(t, y) and consider the numerical scheme

Yn+1 = Yn +
h

2

(
f(tn+1, Ỹn+1) + f(tn, Yn)

)
, with Ỹn+1 = Yn + hf(tn, Yn) .

Prove that Y1 = 4/(h2 − 2) for any step h. In addition, approximate y(1) using the given
scheme with h1 = 0.5.

(iii) Estimate the order of the numerical method, knowing that Y h2
10 = −3.239 is an approximation

of y(1) calculated with h2 = 0.1.

SOLUTION:

(i) The given first-order ODE is exact, since it can be written as M(t, y) +N(t, y) y′ = 0 , where

M(t, y) = 2ty and N(t, y) = t2 + y , and we have
∂M

∂y
= 2t =

∂N

∂t
. On the other hand, as the

solution of the IVP is given, we can follow either of the next steps.

(A) – We can substitute the given solution into the IVP, showing it is verified by y(t).

(B) – We can explicitly calculate the solution of the IVP as follows. As the ODE is exact, there

exists a function F = F (t, y) such that
∂F

∂t
= 2ty,

∂F

∂y
= t2+y, where

dF

dt
=
∂F

∂t
+
∂F

∂y

dy

dt
= 0 .

Then, we can obtain F by integrating
∂F

∂t
, namely

F =

∫
(2ty) dt = t2y + φ(y) .

In addition, if we calculate the derivative with respect to y of the previous expression and

equate it to
∂F

∂y
= t2 + y , we get φ′(y) = y , hence φ(y) =

y2

2
+ C1 . As a consequence



(C1 = 0), we can write F (t, y) =
y2

2
+ t2y . Finally, from

dF

dt
= 0 we get

y2

2
+ t2y = C , where

the constant C is provided by the initial condition as

y(0)2

2
+ 02y(0) = C =⇒ C = 2 .

The solution of the IVP is then y(t) = −t2 −
√
t4 + 4 .

(ii) We can write

y′ = f(t, y) = − 2ty

t2 + y
with y(t0 = 0) = −2 = y0 ≡ Y0 .

In order to show that Y1 =
4

h2 − 2
for any h , let’s first calculate Ỹ1 = Y0 + hf(t0, Y0) = −2.

Then, substituting into the numerical scheme, we have f(t1, Ỹ1) = f(h,−2) =
4h

h2 − 2
together

with f(t0, Y0) = f(0,−2) = 0, which yields Y1 = −2 +
h

2

(
4h

h2 − 2

)
=

4

h2 − 2
. The value

Y h1
2 approximating y(1) is obtained using h1 = 0.5 in the previous expression for Y1 and

performing one more iteration with the scheme, which finally provides Y h1
2 = −3.337 .

(iii) From (i) we can calculate y(1) = −3.236 . Furthermore, we have Eh1t=1 =
∣∣∣Y h1

2 − y(1)
∣∣∣ = 0.101

and Eh2t=1 =
∣∣∣Y h2

10 − y(1)
∣∣∣ = 0.003. As h2 = h1/5, we get

Eh2t=1 ≈ Ch
p
2 = C

(
h1
5

)p
≈ Eh1t=1

5p
,

where p is the order of the method. Taking the logarithm of both sides of the previous
expression yields p ≈ 2.19. Thus, the order of the given numerical scheme is p = 2 .

Problem 15 Consider the following initial value problem (IVP){
y′ + ky = k sin t+ cos t
y(0) = 1

for t ≥ 0 , where k is a positive real parameter.

(a) Classify the differential equation of the IVP and calculate its solution.

(b) Take k = 3 in the IVP and find an approximated value of y(π/4) by applying the method of
explicit Euler with step h = π/4. Then, compare the result with that obtained considering
the exact solution y(t) = sin t+ e−3t .

(c) Is the approximation obtained in (b) with step h = π/4 acceptable? If yes, justify your
answer. If no, find an upper bound for h yielding an acceptable approximation of y(π/4).



SOLUTION:

(a) The equation is a first-order linear ODE, which can be solved by means of the integrating
factor µ = ekt . Hence

(ekty)′ = ekt ( k sin t+ cos t ) =⇒ ekty = k

∫
ekt sin t dt+

∫
ekt cos t dt+ C .

As
∫
ekt cos t dt = ekt sin t− k

∫
ekt sin t dt , we directly get

y(t) = sin t+ Ce−kt .

The initial condition gives C = 1 , thus the solution of the IVP is

y(t) = sin t+ e−kt .

(b) The approximated value of y(π/4) obtained by the first iteration of the explicit Euler method

is Y
h=π

4
1 = 1 + h(1 − k) = 1 +

π

4
(1 − 3) = −0.571 . On the other hand, its exact value is

y(π/4) = 0.802 . Hence, the involved error is |y(π/4)− Y h=π
4

1 | = 1.373 .

(c) As observed in (b), the exact value of y(π/4) is positive, while its computed approximation
is negative. Hence, the latter doesn’t seem to be an acceptable approximation. In order to
find an upper bound for h yielding an acceptable approximation of y(π/4), let’s perform the
following analysis.
Upon examining the exact solution, namely y(t) = sin t + e−3t , we realize that the problem
is stiff due to the term e−3t that may perturb the stability of the used numerical scheme.
Indeed, according to what obtained in (b), we can suspect that the explicit Euler method is
unstable with h = π/4 .
From the IVP we have f(t, y) = −ky + k sin t + cos t . For the sake of clarity, let’s call
gn = k sin tn + cos tn , from which we can write f(tn, Yn) = −kYn + gn . Then

Yn+1 = Yn + hf(tn, Yn)

= (1− hk)Yn + h gn

= (1− hk)2Yn−1 + h [gn + (1− hk)gn−1]

= (1− hk)3Yn−2 + h
[
gn + (1− hk)gn−1 + (1− hk)2gn−2

]
= ...

= (1− hk)n+1Y0 + h
n∑
p=0

(1− hk)pgn−p .

The powers (1−hk)n+1 vanish as n→∞ only if |1−hk| < 1 . As k > 0 , we get h <
2

k
=

2

3
(note that h = π/4 > 2/3 , which justifies the unacceptable approximation obtained above).

Thus, taking for instance h =
π

8
<

2

3
and performing two iterations with the explicit Euler

scheme, we get the value Y
h=π

8
2 = 0.775 , which is a reasonable approximation of y(π/4) .



Problem 16 Solve the following initial value problem, writing the solution in explicit form.

 (1− lnx) y′ = 1 + lnx+
y

x
, for 0 < x < e ,

y(1) = 1 .

SOLUTION:
The differential equation is exact. Indeed, it can be written in the form M(x, y) +N(x, y) y′ = 0
as (

1 + lnx+
y

x

)
+ (lnx− 1) y′ = 0

with
∂M(x, y)

∂y
=

∂N(x, y)

∂x
=

1

x
.

Then, its solution is of the form F (x, y(x)) = C , where C is a constant and F is a function
satisfying

∂F

∂x
= M(x, y) ,

∂F

∂y
= N(x, y) .

The desired function F can be obtained as

F (x, y) =

∫
M(x, y) dx =

∫ (
1 + lnx+

y

x

)
dx = x+x lnx−x+y lnx+h(y) = x lnx+y lnx+h(y) ,

where h(y) has to be found. On the other hand, since
∂F

∂y
= N(x, y) , we can write

lnx− 1 = lnx+ h′(y) =⇒ h′(y) = −1 =⇒ h(y) = −y ,

where the integration constant has been taken equal to zero. Hence, the general solution of the
given differential equation is

F (x, y(x)) = x lnx+ y(x) lnx− y(x) = C .

Moreover, the initial condition y(1) = 1 yields C = −1 .

Finally, the solution of the given initial value problem can be written in explicit form as

y(x) =
x lnx+ 1

1− lnx

with 0 < x < e .

Problem 17 Consider the following initial value problem{
y′ + y = 2 t2

y(0) = 5 .



(i) Verify that y(t) = e−t + 2 t2 − 4 t+ 4 is the exact solution.

(ii) Use the following Runge-Kutta method

Yn+1 = Yn +
1

2
(K1 + K2 ) , with K1 = h f(tn, Yn) , K2 = h f(tn+1, Yn +K1) ,

for n = 0, 1, 2, . . . , to approximate the value y(0.2) with h = h1 = 0.1 .

(iii) Knowing that Y h2
20 = 4.09875 is an approximation of y(0.2) calculated with h = h2 = 0.01 ,

estimate the order of the numerical method in (ii).

SOLUTION:

(i) Solving the given linear differential equation (by means of the integrating factor µ(t) = e t)
together with the initial condition y(0) = 5 yields the suggested solution. Alternatively, the
validity of the proposed solution can be checked by substituting its expression in both the
differential equation and the initial condition of the given problem.

(ii) We can write the given differential equation as y′ = f(t, y) = 2 t2 − y. Then, applying
the formula of the numerical method, with h = h1 = 0.1, for n = 0 and n = 1 provides
Y1 = 4.52600 and the desired approximation

y(0.2) ≈ Y2 ≡ Y h1
2 = 4.10093 ,

respectively.

(iii) Using the exact solution suggested in (i), we can calculate y(0.2) = 4.09873 . Furthermore,

we have Eh1t=0.2 =
∣∣∣Y h1

2 − y(0.2)
∣∣∣ = 0.0022 and Eh2t=0.2 =

∣∣∣Y h2
20 − y(0.2)

∣∣∣ = 0.00002. As

h2 = h1/10, we get

Eh2t=0.2 ≈ C hp2 = C

(
h1
10

)p
≈ Eh1t=0.2

10p
,

where p is the order of the method (C is a constant). The previous expression yields p ≈ 2.04.
Thus, we can conclude that the order of the numerical method in (ii) is

p = 2 .



Problem 18 Consider the differential equation xy2y′ + x3 = y3 , with 0 < x < 2 .

(a) Classify it, justifying your answer.

(b) Solve it together with the condition y(1) = 2 .

SOLUTION:

(a) The given first-order differential equation is nonlinear and homogeneous, since dividing by
xy2 (supposing y(x) 6= 0 for 0 < x < 2) and isolating y′ yield

y′ =
y

x
− x2

y2
=

y

x
−
(y
x

)−2
,

where the right-hand side is a function of y/x . Another way to verify that the equation is

homogeneous consists in writing y′ =
y

x
− x2

y2
≡ F (x, y) and observing that (α ∈ R)

F (αx, αy) =
αy

αx
− (αx)2

(αy)2
=

αy

αx
− α2x2

α2y2
=

y

x
− x2

y2
= F (x, y) .

(b) Upon the change of variable v =
y

x
, which implies y′ = v′x + v , the equation becomes

separable, namely

v′x+ v = v − v−2 =⇒ v2dv = −dx
x
.

Then, integration yields
v3

3
= − lnx+C and, undoing the change of variable, we get

y3

3x3
=

− lnx + C , where C is a constant. Finally, using the given condition y(1) = 2 , we obtain
C = 8/3 . Thus, the desired solution is

y3

3x3
= − lnx+

8

3
=⇒ y3 = x3(8− 3 lnx) .

Problem 19 Consider the following initial value problem{
y′ + 6 y = 0

y(0) = 1 .

(a) Apply to the problem one iteration of the explicit Euler method with step h1 = 0.05. Then,
say whether the method is stable with the suggested step.

(b) Use the value Y1 computed in (a) and the following Adams–Moulton method of order 2

Yn+2 = Yn+1 +
h

2

[
f(tn+1, Yn+1) + f(tn+2, Yn+2)

]
,

for n = 0, 1, 2, . . . , to approximate the value y(0.1) with h = h1 = 0.05.



(c) Knowing that Eh2t=0.1 = 0.00112 is the error of approximating y(0.1) using the method in (b)
with step h2 = h1/q, calculate the value of h2 (note that y(0.1) = 0.54881 and q ∈ N is the
step reduction factor).

SOLUTION:

(a) One iteration of the explicit Euler method (for n = 0) with step h1 = 0.05 reads Y1 =
Y0 − 6h1 Y0 = 1− 0.3 = 0.7 . Despite the given linear differential equation is stiff, the used
numerical method is stable, as h1 = 0.05 < 2 / 6 ≈ 0.33 .

(b) Applying the formula of the given numerical method, with h = h1 = 0.05, for n = 0 we get
Y2 = Y1 + (h1/2) [−6Y1 − 6Y2 ] , namely Y2 = Y1 (1 − 3h1) / (1 + 3h1) = 0.51739 . Thus,

Y2 = Y h1
2 = 0.51739 is the desired approximation of y(0.1).

(c) Using the suggested value y(0.1) = 0.54881 , we can calculate Eh1t=0.1 =
∣∣∣Y h1

2 − y(0.1)
∣∣∣ =

0.03142 . Then, being p = 2 the order of the method in (b), we have

Eh2t=0.1 ≈ C h22 = C

(
h1
q

)2

≈ Eh1t=0.1

q2
,

where q ∈ N is the step reduction factor. Thus, the previous expression yields q ≈ 5 and we

can conclude that h2 = h1/5 = 0.01 .

Problem 20 Can you use the explicit Euler method to solve approximately the initial value prob-
lem: y′ = 1 + y2 in x ∈ [0, 3], with y(0) = 0? Hint: Find the exact solution and discuss.

SOLUTION:
The exact solution follows from separation of variables:∫

dy

1 + y2
=

∫
dx+ C =⇒ arctan y = x+ C =⇒ y = tan(x+ C).

The initial condition gives 0 = tanC, so that C = 0 and y(x) = tanx. The tangent function has a
vertical asymptote at x = π/2 < 3, which cannot be captured by the explicit Euler method. This
method will not be able to find the asymptote, as the slopes used to calculate the approximate
solution will fall below y(x) and surpass the vertical line x = π/2.



Problem 21 A new European football league is planned so that the yearly sales of tickets grow
at a speed proportional to the difference between sales at time t and a higher bound of 300 million
euros. Assume no ticket has been sold at t = 0 and that sales should be 40 million euro after 3
years (otherwise the competition is cancelled). Based on this assumption, how long it should take
for the yearly ticket sales to have reached 220 million euro?

SOLUTION:
Let x(t) be the ticket sales at time t. The corresponding initial value problem is

dx

dt
= α(300− x), x(0) = 0,

where α is a constant. The solution of the IVP is x(t) = 300(1− e−αt). We know that x(3) = 40,
and therefore

40 = 300(1− e−3α) =⇒ e−3α = 1− 40

300
=

13

15
=⇒ α =

1

3
ln

15

13
=

1

3
(ln 15− ln 13).

We now seek a time T such that x(T ) = 220. Thus

220 = 300(1− e−αT ) =⇒ e−αT = 1− 11

15
=⇒ T =

1

α
ln

15

4
=⇒ T = 3

ln 15− ln 4

ln 15− ln 13
≈ 27.71 years.

Problem 22 The population of a large cluster of atoms decreases to one third its initial size in one
year, at a rate proportional to the instantaneous number of atoms. (a) Model the evolution of the
atom population by means of a differential equation and calculate its growth rate proportionality
constant r. (b) Use the explicit Euler method to solve the ODE and indicate the maximum step
size for which the Euler scheme is stable.

SOLUTION:
(a) The ODE for the atom population y(t) is y′ = −ry which, solved for y(0) = y0, yields y(t) =

y0e
−rt. For t = 1 yr, 1

3 = e−r and therefore r = ln 3/yr .

(b) The explicit Euler method gives yj+1 = yy − hryj = (1− rh)yj . The solution is

yj = (1− rh)jy0,

and stability requires

−1 ≤ 1− rh ≤ 1 =⇒ r ≥ 0 &− 1 + rh ≤ 1 =⇒ r ≥ 0 & h ≤ 2

r
=

2

ln 3
.

The step size should be less or equal than 2/ ln 3 ≈ 1.82 yr.

Problem 23 Given the Ordinary Differential Equation (ODE):

y′ = ex+y with x > 0,



i) Classify this ODE.

ii) Solve the ODE with initial condition y(1) = 1.

SOLUTION:

i) First order separable ODE.

ii) We multiply it by e−y to obtain e−yy′ = ex. Then
∫ y
1 e
−ydy =

∫ x
1 e

xdx solves the initial value
problem. We find

−ey|y1 = ex|x1 =⇒ e−1 − e−y = ex − e =⇒ e−y = (e+ e−1 − ex).

y = − ln(e+ e−1 − ex).

Problem 24 A cauldron of boiling soup is placed in a room at 0oC and its temperature becomes
20oC after 30 minutes. (a) Model the evolution of the soup temperature by means of a differential
equation (Newton cooling law) and calculate the cooling rate proportionality constant −r. (b) Use
the explicit Euler method to solve the ODE and indicate the maximum step size for which the
Euler scheme is stable.

SOLUTION:
(a) The ODE for the soup temperature y(t) is y′ = −ry which, solved for y(0) = 100 yields
y(t) = 100e−rt. For t = 30 min, 20 = 100e−30r and therefore e30r = 100/20 = 5, so that r = 1

30 ln 5
min−1.
(b) The explicit Euler method gives yj+1 = yj − hryj = (1− rh)yj . As y0 = 100, the solution is

yj = 100 (1− rh)j ,

and stability requires

−1 ≤ 1− rh ≤ 1 =⇒ r ≥ 0 &− 1 + rh ≤ 1 =⇒ r ≥ 0 & h ≤ 2

r
=

60

ln 5
.

The step size should be less or equal than 60/ ln 5 = 37.28 min.


