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Problem 1 Find the general solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t),
with

A =

 1 1 2
1 2 1
2 1 1


SOLUTION:
Eigenvalues of the matrix A: λ1 = 4, λ2 = −1, λ3 = 1.
Eigenvectors: Vλ1 = (1, 1, 1), Vλ2 = (−1, 0, 1), Vλ3 = (1,−2, 1).
General solution:

X1(t) = c1

[
1

6
et +

1

3
e4t +

1

2
e−t
]

+ c2

[
−1

3
et +

1

3
e4t
]

+ c3

[
1

6
et +

1

3
e4t − 1

2
e−t
]

;

X2(t) = c1

[
−1

3
et +

1

3
e4t
]

+ c2

[
2

3
et +

1

3
e4t
]

+ c3

[
−1

3
et +

1

3
e4t
]

;

X3(t) = c1

[
1

6
et +

1

3
e4t − 1

2
e−t
]

+ c2

[
−1

3
et +

1

3
e4t
]

+ c3

[
1

6
et +

1

3
e4t +

1

2
e−t
]

;

with c1 , c2 , c3 ∈ R



Problem 2 Find the solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t), with

A =

[
5 −1
3 1

]
, ~X(0) =

[
2
−1

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = 4, λ2 = 2.
Eigenvectors: Vλ1 = (1, 1), Vλ2 = (1, 3) .
Solution:

X1(t) =
7

2
e4t − 3

2
e2t ;

X2(t) =
7

2
e4t − 3

2
e2t ;

Problem 3 Find the solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t), with

A =

[
1 −1
5 −3

]
, ~x(0) =

[
2
−1

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = −1 + i, λ2 = −1− i.
Eigenvectors: Vλ1 = (2 + i, 5), Vλ2 = (2− i, 5) .
Solution:

X1(t) = 5e−t sin(t) + 2e−t cos(t) ;

X2(t) = 12e−t sin(t)− e−t cos(t) ;

Problem 4 Find the general solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t),
with

A =

[
3 −2
4 −1

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = 1 + i2, λ2 = 1− i2.
Eigenvectors: Vλ1 = (1 + i, 2), Vλ2 = (1− i, 2) .
General solution:

X1(t) = c1e
t(sin(2t) + cos(2t))− c2et sin(2t) ;

X2(t) = 2c1e
t sin(2t) + c2e

t(cos(2t)− sin(2t)) ;

with c1 , c2 ∈ R



Problem 5 Find the solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t), with

A =

[
1 −5
1 −3

]
, ~x(0) =

[
1
1

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = −1 + i, λ2 = −1− i.
Eigenvectors: Vλ1 = (2 + i, 1), Vλ2 = (2− i, 1) .
Solution:

X1(t) = e−t(cos(t)− 3 sin(t)) ;

X2(t) = e−t(cos(t)− sin(t)) ;

Problem 6 Find the solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t), with

A =

[
−3 2
−1 −1

]
, ~x(0) =

[
1
−2

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = −2 + i, λ2 = −2− i.
Eigenvectors: Vλ1 = (1− i, 1), Vλ2 = (1 + i, 1) .
Solution:

X1(t) = e−2t(cos(t)− 5 sin(t)) ;

X2(t) = −e−t(3 sin(t) + 2 cos(2t)) ;

Problem 7 Find the general solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t),
with

A =

[
1 −1
1 3

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = λ2 = 2.
Eigenvector: V = (−1, 1).
General solution:

X1(t) = c1e
2t(1− t)− c2te2t ;

X2(t) = c1te
2t − c2e2t(1 + t) ;

with c1 , c2 ∈ R

Problem 8 Find the general solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t),
with

A =

[
3 −4
1 −1

]



SOLUTION:
Eigenvalues of the matrix A: λ1 = λ2 = 1.
Eigenvector: V = (2, 1).
General solution:

X1(t) = c1e
t(2t+ 1)− 4c2te

t ;

X2(t) = c1te
t − c2et(2t− 1) ;

con c1 , c2 ∈ R

Problem 9 Find the general solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t),
with

A =

[
4 −2
8 −4

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = λ2 = 0.
Eigenvector: V = (1, 2).
General solution:

X1(t) = c1(4t+ 1)− 2c2t ;

X2(t) = 8c1t+ c2(−4t+ 1) ;

con c1 , c2 ∈ R

Problem 10 Find the solution of the system of first-order linear ODEs ~X ′(t) = A ~X(t), with

A =

[
1 −4
4 −7

]
, ~x(0) =

[
3
2

]
SOLUTION:
Eigenvalues of the matrix A: λ1 = λ2 = −3.
Eigenvector: V = (1, 1).
Solution:

X1(t) = e−3t(4t+ 3) ;

X2(t) = e−3t(4t+ 2) ;

(1)



Problem 11 Consider the system of differential equations
−→
X ′(t) = A

−→
X (t) , with A =

[
2 −1
1 4

]
,

satisfying the initial condition
−→
X (0) =

(
2
1

)
.

(a) Find the solution
−→
X (t) =

(
X1(t)
X2(t)

)
.

(b) Solve the following initial value problem:

y′′ − 6y′ + 9y = 0 ; y(0) = 1 , y′(0) = 6 .

(c) Applying the change of variable X2(t) = y(t), prove that the system of differential equations
is equivalent to the initial value problem given in (b). Then, compare the solutions obtained
in (a) and (b).

NOTE. The following formula may be useful: L
{

tneat

n!

}
= 1/(s− a)n+1 for n = 0, 1, 2, ...

SOLUTION:
(a) Let’s calculate the eigenvalues and eigenvectors of the coefficient matrix A. Thus, solving the
equation |A−λI| = 0 , we get the double eigenvalue λ = 3 . An eigenvector associated with λ = 3

is −→v =

(
1
−1

)
, which yields the first fundamental solution as

−→
X 1(t) =

(
1
−1

)
e3t .

In addition, by solving the system (A− 3I)−→w = −→v , we get the second fundamental solution as

−→
X 2(t) =

(
0
−1

)
e3t +

(
1
−1

)
te3t .

Hence, the general solution of the given system of differential equations is

−→
X (t) = C1

−→
X 1(t) + C2

−→
X 2(t) = C1

(
1
−1

)
e3t + C2

[(
0
−1

)
e3t +

(
1
−1

)
te3t
]
.

Finally, using the initial condition
−→
X (0) =

(
2
1

)
, we find the values C1 = 2 and C2 = −3, which

gives the final general solution as

−→
X (t) =

(
X1(t)
X2(t)

)
=

(
(2− 3t)e3t

(1 + 3t)e3t

)
.

(b) The differential equation is a homogeneous linear second-order ODE with constant coefficients.
Applying initial conditions we find the solution:

y(t) = e3t + 3 t e3t .



(c) The second equation of the system is X ′2(t) = X1(t)+4X2(t) , which upon differentiating results
in X ′′2 (t) = X ′1(t) + 4X ′2(t) . The same equation also yields X1(t) = X ′2(t)− 4X2(t) . On the other
hand, the first equation of the system is X ′1(t) = 2X1(t)−X2(t) . Thus

X ′′2 (t) = 2X1(t)−X2(t) + 4X ′2(t) = 2
[
X ′2(t)− 4X2(t)

]
−X2(t) + 4X ′2(t) = 6X ′2(t)− 9X2(t) .

After changing X2(t) = y(t) we get y′′−6y′+ 9y = 0 , with the initial conditions y(0) = X2(0) = 1
and y′(0) = X ′2(0) = X1(0) + 4X2(0) = 2 + 4 = 6 , which is exactly the problem in (b). Regarding
the solutions, we can observe that y(t) coincides with X2(t) and, since X1(t) = X ′2(t)− 4X2(t) , we
also have

X1(t) = y′(t)− 4y(t) = (6 + 9t)e3t − 4 (1 + 3t)e3t = (2− 3t)e3t .

Problem 12 Given the system of differential equations
−→
X ′(t) = A

−→
X (t) , with A =

[
1 2
−1 4

]
,

find
−→
X (t) and calculate lim

t→−∞

−→
X (t) .

SOLUTION:
The general solution of the given system is obtained in terms of the eigenvalues and eigenvectors
of the coefficient matrix A. The eigenvalues are λ1 = 3 and λ2 = 2 (real and different) . Two

associated eigenvectors are ξ1 =

(
1
1

)
and ξ2 =

(
2
1

)
, respectively. Thus, the desired solution

is given by

−→
X (t) = c1 ξ1 e

λ1t + c2 ξ2 e
λ2t = c1

(
1
1

)
e3t + c2

(
2
1

)
e2t ,

where c1 and c2 are constants. In addition, since lim
t→−∞

e3t = lim
t→−∞

e2t = 0 and c1, c2, ξ1, ξ2 do not

depend on t , we get

lim
t→−∞

−→
X (t) =

(
0
0

)
.

Problem 13 Consider the system of differential equations
−→
X ′(t) = A

−→
X (t) , withA =

[
4 2
4 −3

]
.

(a) Find the general solution
−→
X (t) .

(b) Find one solution that is bounded for t −→ +∞ .

SOLUTION:

(a) The general solution of the system is obtained calculating the eigenvalues and eigenvectors of
the matrix A . The eigenvalues are calculated by solving |A−λI| = 0 , which yields λ1 = −4 ,



λ2 = 5 (real and different). In addition, two associated eigenvectors are ξ1 =

(
1
−4

)
and

ξ2 =

(
2
1

)
, respectively. Hence, the general solution can be written as

−→
X (t) = c1ξ1e

λ1t + c2ξ2e
λ2t = c1

(
1
−4

)
e−4t + c2

(
2
1

)
e5t ,

where c1 , c2 are arbitrary constants.

(b) Considering the general solution of the system calculated in (a), we can get one particular
solution that is bounded for t −→ +∞ by setting for instance c1 = 1 and c2 = 0 , which
yields

−→
X p(t) = ξ1e

λ1t =

(
1
−4

)
e−4t .

Problem 14 i) Write the Ordinary Differential Equation (ODE) x′′+x = 0 (x(0) = x0, x
′(0) =

v0) as a system of two first order ODEs for x(t) and v(t) = x′(t).

ii) Approximate the equation for x(t) by a forward Euler scheme and that for v(t) by a backward
Euler scheme, both with time step ∆t = τ .

iii) Find the values of τ for which the solutions x(tn) ≈ xn = λnx0, v(tn) ≈ vn = λnv0 produce a
stable scheme with |λ| = 1.

SOLUTION:

i) First order linear ODEs are x′ = v, v′ = −x.

ii) The overall scheme is xn+1 − xn = vnτ , vn+1 − vn = −xn+1τ .

iii) Inserting xn = λnx0, vn = λnv0 in the scheme and dividing by λn, we get:

(λ− 1)x0 = v0τ, and (λ− 1)v0 = −x0λτ =⇒ (λ− 1)2v0 = −v0λτ2.

The last equation yields the eigenvalue problem λ2 − (2− τ2)λ+ 1 = 0, with solutions

λ =
2− τ2 ±

√
(2− τ2)2 − 4

2
=

2− τ2 ±
√
τ2(τ2 − 4)

2
= 1− τ2

2
± iτ

2

√
4− τ2.

We find |λ| = 1 if the eigenvalues are complex conjugate or ±1, which means 0 ≤ τ2 ≤ 4, i.e.,
0 ≤ τ ≤ 2.



Problem 15 Classify the equilibrium point and solve the following system of first order linear
ODEs: {

x′ = y,

y′ = −5x− 4y.
Find the solution that has the initial condition

{
x(0) = 2,

y(0) = −4.

SOLUTION:
The eigenvalues are given by:∣∣∣∣−λ 1

−5 −4− λ

∣∣∣∣ = λ2 + 4λ+ 5 = 0,⇒ λ1,2 = −2± i.

As the real parts of both eigenvalues are negative, the equilibrium point is stable. As the λ-s are
complex, the equilibrium point is a stable spiral point (stable focus). The eigenvectors can be
calculated as solutions of the system:{

−λv1 + v2 = 0,

−5v1 + (−2± i)v2 = 0,

for the obtained eigenvalues. From the first equation it is clear the eigenvectors are

v1,2 =

(
1
λ1,2

)
=

(
1

−2± i

)
.

Thus the solution is

x =

(
x
y

)
= c1e

(−2+i)t
(

1
−2 + i

)
+ c2e

(−2−i)t
(

1
−2− i

)
,

where c1 and c2 can be determined from the initial conditions:

x(0) = c1 + c2 = 2,

y(0) = (−2 + i)c1 + (−2− i)c2 = −2(c1 + c2) + i(c1 − c2) = −4,

⇒

{
c1 + c2 = 2,

−2(c1 + c2) + i(c1 − c2) = 4,
⇒

{
c1 + c2 = 2,

c1 − c2 = 0,
⇒ c1 = c2 = 1.

Plugging these values into the formula for the solution, we obtain:

x =

(
x
y

)
= e−2t

(
eit + e−it

−2
(
eit + e−it

)
+ i
(
eit − e−it

)) = e−2t
(

2 cos t
−4 cos t− 2 sin t

)
.

We have used here that

eit + e−it

2
= cos t,

eit − e−it

2i
= sin t.



Problem 16 Find the general solution of the following linear system of differential equations:

x′ = 4x− y, y′ = 3x+ y.

Classify the equilibrium solution (0, 0) and draw the phase portrait.

SOLUTION:
Firstly, we write this system of ODEs as a vector equation,

x′ = Ax, x =

(
x
y

)
, A =

(
4 −1
3 1

)
.

To solve it, we set x = eλtv, thereby obtaining the eigenvalue problem Av = λv. The eigenvalue
equation is λ2 − 5λ+ 7 = 0. Then

λ =
5±
√

25− 28

2
=

5

2
± i
√

3

2
.

As the eigenvalues are complex conjugate, with positive real part, the equilibrium solution is an
unstable spiral point (or unstable focus).

To find the solution, we write

x(t) = e5t/2

(
a cos

t
√

3

2
+ b sin

t
√

3

2

)
,

insert it in the vector ODE and obtain[(
A− 5

2
I

)
a−
√

3

2
b

]
cos

t
√

3

2
+

[(
A− 5

2
I

)
b+

√
3

2
a

]
sin

t
√

3

2
= 0.

Then

a =

√
3

2

(
A− 5

2
I

)−1
b =

√
3

2

(
3
2 −1
3 −3

2

)−1
b =

√
3

2

(
−2 4

3
−4 2

)
b =
√

3

(
−b1 + 2

3b2
−2b1 + b2

)
.

Inserting this in the solution, we obtain the general solution

x(t) = e5t/2

(
b1(sin

t
√
3

2 −
√

3 cos t
√
3

2 ) + 2√
3
b2 cos t

√
3

2

−2b1
√

3 cos t
√
3

2 + b2(sin
t
√
3

2 +
√

3 cos t
√
3

2 )

)
,

in which b1 and b2 are arbitrary real numbers.

Problem 17 Solve the following system of first order linear ODEs, classify the equilibrium point
(0, 0) and draw its phase portrait, indicating explicitly any real eigendirections that may be relevant.{

x′1 = 7x1 + 6x2
x′2 = 2x1 + 6x2



SOLUTION:

i) The coefficient matrix has trace 13 and determinant 30. Therefore the characteristic polyno-
mial is λ2 − 13λ + 30 and thus the eigenvalues are 13

2 ±
7
2 , i.e., 3 and 10. The components

of the eigenvector corresponding to 3 satisfy: 4v1 + 6v2 = 0, so that v1 = 3 and v2 = −2.
Similarly, the components of the eigenvector corresponding to 10 satisfy: −3v1 + 6v2 = 0, so
that v1 = 2 and v2 = 1. Then the general solution of the system of ODEs is(

x1
x2

)
= a e3t

(
3
−2

)
+ b e10t

(
2
1

)
.

ii) As the eigenvalues are both positive, the origin is an unstable node. The eigenvectors provide
the directions of exit for trajectories. The ordinary eigendirection (3,−2) corresponds to the
eigenvalue 3 and the extraordinary eigendirection (2, 1) corresponds to the eigenvalue 10. The
phase portrait is depicted in the figure.


