uc3m | Universidad Carlos III de Madrid

APPLIED DIFFERENTIAL CALCULUS

LECTURE 4: Boundary value problems.

 PROBLEMS
Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1

Find the solution of the following boundary value problem:

$$
y^{\prime \prime}+5 y=0 ; \quad y(0)=1 ; y(\pi)=0 .
$$

SOLUTION:

The general solution of the differential equation is:

$$
y(x)=c_{1} \cos (\sqrt{5} x)+c_{2} \sin (\sqrt{5} x), \quad \text { with } \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The first boundary condition gives $c_{1}=1$ and the second gives $c_{1} \cos (\sqrt{5} \pi)+c_{2} \sin (\sqrt{5} \pi)=0 \Longrightarrow$ $c_{2}=-\cot (\sqrt{5} \pi)$, then, the problem has a unique solution:

$$
y(x)=\cos (\sqrt{5} x)-\cot (\sqrt{5} \pi) \sin (\sqrt{5} x) .
$$

Problem 2

Solve the boundary value problem:

$$
y^{\prime \prime}+y=0 ; \quad y(0)=1 ; y(\pi)=\alpha,
$$

where α is a given real number.

SOLUTION:

The general solution of the differential equation is:

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x), \quad \text { with } \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The first boundary condition gives $c_{1}=1$ and the second gives $-c_{1}=\alpha$.
These two conditions on c_{1} are incompatible if $\alpha \neq-1$, so the problem has no solution in that
case.
However, if $\alpha=-1$, then both boundary conditions are satisfied provided that $c_{1}=1$, regardless of the value of c_{2}. In this case there are infinitely many solutions of the form:

$$
y(x)=\cos (x)+c_{2} \sin (x),
$$

where c_{2} is arbitrary.

Problem 3

Find the solution of the following boundary value problem:

$$
y^{\prime \prime}+5 y=0 ; \quad y(0)=0 ; y(\pi)=0
$$

SOLUTION:

The general solution of the differential equation is:

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x), \quad \text { with } \quad c_{1}, c_{2} \in \mathbb{R}
$$

The first boundary condition gives $c_{1}=1$ and the second gives $c_{2}=0$. the problem has a unique solution: $y(x)=0, \quad \forall x \in[0, \pi]$.

Problem 4

Solve the boundary value problem:

$$
y^{\prime \prime}+y=0 ; \quad y(0)=0 ; y(\pi)=0
$$

SOLUTION:

The general solution of the differential equation is:

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x), \quad \text { with } \quad c_{1}, c_{2} \in \mathbb{R}
$$

The first boundary condition gives $c_{1}=0$.
On the other hand, since $\sin (\pi)=0$, the second boundary condition is also satisfied regardless of the value of c_{2}. Thus the solution of the problem is $y=c_{2} \sin (x)$, where c_{2} is arbitrary, therefore the problem have infinitely many solutions

Problem 5 Given the following boundary value problem:

$$
X^{\prime \prime}+\lambda X=0 ; \quad X^{\prime}(0)=0, \quad X^{\prime}(\pi / 3)=0,
$$

find the values of the constant parameter $\lambda \geq 0$ yielding non-zero solutions.

SOLUTION:

Let us now distinguish two cases. Case 1. $\lambda=0$ $X^{\prime \prime}=0 \Longrightarrow X(x)=c_{1} x+c_{2}$ with $c_{1}, c_{2} \in \mathbb{R}$. As $X^{\prime}(x)=c_{1}$, we have that $X^{\prime}(0)=0=c_{1}=$ $X^{\prime}(\pi / 3)$. Hence, if $\lambda=0$ then the function $X(x)=c_{2} \neq 0$ is a nonzero solution of the problem.
Case 2. $\lambda>0$
Let us take $\lambda=a^{2}$, with $a>0$. The corresponding characteristic equation is then $r^{2}+a^{2}=0 \Longrightarrow$ $r= \pm i a, i \in \mathbb{C}$. Hence

$$
X(x)=c_{1} \cos (a x)+c_{2} \sin (a x) ; \quad X^{\prime}(x)=-a c_{1} \sin (a x)+a c_{2} \cos (a x), \text { with } c_{1}, c_{2} \in \mathbb{R} .
$$

Applying the BCs we get $X^{\prime}(0)=0 \Longrightarrow c_{2}=0 ; X^{\prime}(\pi / 3)=0 \Longrightarrow-a c_{1} \sin (a \pi / 3)=0$. Then, imposing $c_{1} \neq 0$ yields $\sin (a \pi / 3)=0 \Longrightarrow a \pi / 3=n \pi \Longrightarrow a=3 n, n=1,2,3, \ldots$. Finally,

$$
\lambda=(3 n)^{2}=9 n^{2}, n=1,2,3, \ldots
$$

Problem 6 Solve the following boundary value problem:

$$
X^{\prime \prime}+\lambda X=0 ; \quad X^{\prime}(0)=0, \quad X(1)=0,
$$

and find the values of the constant parameter $\lambda>0$ yielding non-zero solutions.

SOLUTION:

The general solution $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$ produces $c_{2}=0$ and then $\cos \sqrt{\lambda}=0$. Therefore,

$$
\sqrt{\lambda}=\left(n-\frac{1}{2}\right) \pi \Longrightarrow \lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4}, \quad n=1,2, \ldots
$$

and the corresponding solutions are:

$$
X_{n}(x)=\cos \frac{(2 n-1) \pi x}{2} .
$$

Problem 7 Solve the following boundary value problem:

$$
X^{\prime \prime}+\lambda X=0 ; \quad X(0)=0, \quad X^{\prime}(1)=0,
$$

and find the values of the constant parameter $\lambda>0$ yielding non-zero solutions.

SOLUTION:

The general solution of the ODE, $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$, produces $X(0)=c_{1}=0$, and $X^{\prime}(1)=c_{2} \sqrt{\lambda} \cos \sqrt{\lambda}=0$.
Then $\sqrt{\lambda}=(2 n-1) \pi / 2, n=1,2, \ldots$.
And the corresponding solutions are:

$$
X_{n}(x)=\sin \left(\frac{(2 n-1) \pi}{2} x\right) .
$$

Problem 8 Solve the following boundary value problem:

$$
X^{\prime \prime}+\lambda X=0 ; \quad X(0)=0, \quad X(1)=0,
$$

and find the values of the constant parameter $\lambda>0$ yielding non-zero solutions.

SOLUTION:

The solution is $\lambda_{n}=n^{2} \pi^{2}, X_{n}(x)=\sin (n \pi x), n=1,2, \ldots$. Why? The general solution of the ODE is $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x) . \quad X(0)=c_{1}=0$ and $X(1)=c_{2} \sin (\sqrt{\lambda})=0$, which yields $\sqrt{\lambda}=n \pi, n=1,2, \ldots$.

Problem 9 Find the eigenvalues and eigenfunctions of the following problem and expand $f(x)=e^{x}$ in terms of the eigenfunctions:

$$
\begin{aligned}
& u^{\prime \prime}+\lambda u=0, \quad x \in(0,1), \\
& u(0)=0, \quad u^{\prime}(1)=0 .
\end{aligned}
$$

SOLUTION:

The general solution of the ODE is $u(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$. The boundary conditions yield $c_{1}=0$ and $\sqrt{\lambda} \cos \sqrt{\lambda}=0$. Then $\sqrt{\lambda}=(2 n-1) \pi / 2, n=1,2, \ldots$. We have

$$
\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4}, \quad u_{n}(x)=\sin \frac{(2 n-1) \pi x}{2}, \quad n=1,2, \ldots
$$

The Fourier coefficients of $f(x)=e^{x}$ are

$$
\begin{aligned}
& f_{n}=2 \int_{0}^{1} e^{x} \sin \frac{(2 n-1) \pi x}{2} d x=2 \operatorname{Im} \int_{0}^{1} \exp \left[\left(1+i \frac{(2 n-1) \pi}{2}\right) x\right] d x=2 \operatorname{Im} \frac{e e^{i(2 n-1) \pi / 2}-1}{1+i \frac{(2 n-1) \pi}{2}} \\
& =2 \operatorname{Im} \frac{e^{i n \pi} e^{-i \pi / 2} e-1}{1+i \frac{(2 n-1) \pi}{2}}=2 \operatorname{Im} \frac{-i(-1)^{n} e-1}{1+i \frac{(2 n-1) \pi}{2}}=-2 \operatorname{Im} \frac{\left[1+(-1)^{n} i e\right]\left[1-i\left(n-\frac{1}{2}\right) \pi\right]}{1+\pi^{2}\left(n-\frac{1}{2}\right)^{2}} \\
& =-2 \frac{(-1)^{n} e-\left(n-\frac{1}{2}\right) \pi}{1+\pi^{2}\left(n-\frac{1}{2}\right)^{2}} .
\end{aligned}
$$

Then

$$
f_{n}=\frac{(2 n-1) \pi-(-1)^{n} 2 e}{1+\pi^{2}\left(n-\frac{1}{2}\right)^{2}}
$$

Also, integrating twice by parts (always set $d v=e^{x} d x$, hence $v=e^{x}$),

$$
\begin{aligned}
& f_{n}=2 \int_{0}^{1} e^{x} \sin \frac{(2 n-1) \pi x}{2} d x=\left.2 e^{x} \sin \frac{(2 n-1) \pi x}{2}\right|_{0} ^{1}-(2 n-1) \pi \int_{0}^{1} e^{x} \cos \frac{(2 n-1) \pi x}{2} d x \\
& =2 e(-1)^{n+1}-\left.(2 n-1) \pi e^{x} \cos \frac{(2 n-1) \pi x}{2}\right|_{0} ^{1}-\frac{(2 n-1)^{2} \pi^{2}}{2} \int_{0}^{1} e^{x} \sin \frac{(2 n-1) \pi x}{2} d x \\
& =2 e(-1)^{n+1}+(2 n-1) \pi-\frac{(2 n-1)^{2} \pi^{2}}{2} \frac{f_{n}}{2}
\end{aligned}
$$

Then

$$
\left[1+\frac{(2 n-1)^{2} \pi^{2}}{4}\right] f_{n}=2 e(-1)^{n+1}+(2 n-1) \pi \Longrightarrow f_{n}=\frac{(2 n-1) \pi-(-1)^{n} 2 e}{1+\pi^{2}\left(n-\frac{1}{2}\right)^{2}}
$$

