
APPLIED DIFFERENTIAL CALCULUS
LECTURE 4: Boundary value problems.

PROBLEMS

Authors:
Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1

Find the solution of the following boundary value problem:

y′′ + 5y = 0 ; y(0) = 1 ; y(π) = 0 .

SOLUTION:
The general solution of the differential equation is:

y(x) = c1 cos(
√

5x) + c2 sin(
√

5x) , with c1, c2 ∈ R .

The first boundary condition gives c1 = 1 and the second gives c1 cos(
√

5π) + c2 sin(
√

5π) = 0 =⇒
c2 = − cot(

√
5π) , then, the problem has a unique solution:

y(x) = cos(
√

5x)− cot(
√

5π) sin(
√

5x) .

Problem 2

Solve the boundary value problem:

y′′ + y = 0 ; y(0) = 1 ; y(π) = α ,

where α is a given real number.

SOLUTION:
The general solution of the differential equation is:

y(x) = c1 cos(x) + c2 sin(x) , with c1, c2 ∈ R .

The first boundary condition gives c1 = 1 and the second gives −c1 = α .
These two conditions on c1 are incompatible if α 6= −1 , so the problem has no solution in that



case.
However, if α = −1, then both boundary conditions are satisfied provided that c1 = 1, regardless
of the value of c2. In this case there are infinitely many solutions of the form:

y(x) = cos(x) + c2 sin(x) ,

where c2 is arbitrary.

Problem 3

Find the solution of the following boundary value problem:

y′′ + 5y = 0 ; y(0) = 0 ; y(π) = 0 .

SOLUTION:
The general solution of the differential equation is:

y(x) = c1 cos(x) + c2 sin(x) , with c1, c2 ∈ R .

The first boundary condition gives c1 = 1 and the second gives c2 = 0 .
the problem has a unique solution: y(x) = 0 , ∀x ∈ [0, π] .

Problem 4

Solve the boundary value problem:

y′′ + y = 0 ; y(0) = 0 ; y(π) = 0 .

SOLUTION:
The general solution of the differential equation is:

y(x) = c1 cos(x) + c2 sin(x) , with c1, c2 ∈ R .

The first boundary condition gives c1 = 0 .
On the other hand, since sin(π) = 0, the second boundary condition is also satisfied regardless of
the value of c2. Thus the solution of the problem is y = c2 sin(x) , where c2 is arbitrary, therefore
the problem have infinitely many solutions



Problem 5 Given the following boundary value problem:

X ′′ + λX = 0 ; X ′(0) = 0 , X ′(π/3) = 0 ,

find the values of the constant parameter λ ≥ 0 yielding non-zero solutions.

SOLUTION:
Let us now distinguish two cases. Case 1. λ = 0

X ′′ = 0 =⇒ X(x) = c1x + c2 with c1 , c2 ∈ R . As X ′(x) = c1 , we have that X ′(0) = 0 = c1 =

X ′(π/3) . Hence, if λ = 0 then the function X(x) = c2 6= 0 is a nonzero solution of the problem.

Case 2. λ > 0

Let us take λ = a2 , with a > 0 . The corresponding characteristic equation is then r2 +a2 = 0 =⇒
r = ±ia , i ∈ C . Hence

X(x) = c1 cos(ax) + c2 sin(ax) ; X ′(x) = −ac1 sin(ax) + ac2 cos(ax) , with c1 , c2 ∈ R .

Applying the BCs we get X ′(0) = 0 =⇒ c2 = 0 ; X ′(π/3) = 0 =⇒ −ac1 sin(aπ/3) = 0 . Then,
imposing c1 6= 0 yields sin(aπ/3) = 0 =⇒ aπ/3 = nπ =⇒ a = 3n , n = 1, 2, 3, . . . . Finally,

λ = (3n)2 = 9n2 , n = 1, 2, 3, . . .

Problem 6 Solve the following boundary value problem:

X ′′ + λX = 0 ; X ′(0) = 0 , X(1) = 0 ,

and find the values of the constant parameter λ > 0 yielding non-zero solutions.

SOLUTION:
The general solution X = c1 cos(

√
λx) + c2 sin(

√
λx) produces c2 = 0 and then cos

√
λ = 0.

Therefore,
√
λ =

(
n− 1

2

)
π =⇒ λn =

(2n− 1)2π2

4
, n = 1, 2, . . . ,

and the corresponding solutions are:

Xn(x) = cos
(2n− 1)πx

2
.



Problem 7 Solve the following boundary value problem:

X ′′ + λX = 0 ; X(0) = 0 , X ′(1) = 0 ,

and find the values of the constant parameter λ > 0 yielding non-zero solutions.

SOLUTION:
The general solution of the ODE, X = c1 cos(

√
λx) + c2 sin(

√
λx), produces X(0) = c1 = 0, and

X ′(1) = c2
√
λ cos

√
λ = 0.

Then
√
λ = (2n− 1)π/2, n = 1, 2, . . . .

And the corresponding solutions are:

Xn(x) = sin

(
(2n− 1)π

2
x

)
.

Problem 8 Solve the following boundary value problem:

X ′′ + λX = 0 ; X(0) = 0 , X(1) = 0 ,

and find the values of the constant parameter λ > 0 yielding non-zero solutions.

SOLUTION:
The solution is λn = n2π2, Xn(x) = sin(nπx), n = 1, 2, . . .. Why? The general solution of the
ODE is X = c1 cos(

√
λx) + c2 sin(

√
λx). X(0) = c1 = 0 and X(1) = c2 sin(

√
λ) = 0, which yields√

λ = nπ, n = 1, 2, . . ..

Problem 9 Find the eigenvalues and eigenfunctions of the following problem and expand f(x) = ex

in terms of the eigenfunctions:

u′′ + λu = 0 , x ∈ (0, 1),

u(0) = 0, u′(1) = 0 .

SOLUTION:
The general solution of the ODE is u(x) = c1 cos(

√
λx) + c2 sin(

√
λx). The boundary conditions

yield c1 = 0 and
√
λ cos

√
λ = 0. Then

√
λ = (2n− 1)π/2, n = 1, 2, . . .. We have

λn =
(2n− 1)2π2

4
, un(x) = sin

(2n− 1)πx

2
, n = 1, 2, . . . .

The Fourier coefficients of f(x) = ex are

fn = 2

∫ 1

0
ex sin

(2n− 1)πx

2
dx = 2Im

∫ 1

0
exp

[(
1 + i

(2n− 1)π

2

)
x

]
dx = 2Im

eei(2n−1)π/2 − 1

1 + i (2n−1)π2

= 2Im
einπe−iπ/2e− 1

1 + i (2n−1)π2

= 2Im
−i(−1)ne− 1

1 + i (2n−1)π2

= −2Im
[1 + (−1)nie][1− i

(
n− 1

2

)
π]

1 + π2
(
n− 1

2

)2
= −2

(−1)ne−
(
n− 1

2

)
π

1 + π2
(
n− 1

2

)2 .



Then

fn =
(2n− 1)π − (−1)n2e

1 + π2
(
n− 1

2

)2 .

Also, integrating twice by parts (always set dv = exdx, hence v = ex),

fn = 2

∫ 1

0
ex sin

(2n− 1)πx

2
dx = 2ex sin

(2n− 1)πx

2
|10 − (2n− 1)π

∫ 1

0
ex cos

(2n− 1)πx

2
dx

= 2e(−1)n+1 − (2n− 1)πex cos
(2n− 1)πx

2

∣∣∣∣1
0

− (2n− 1)2π2

2

∫ 1

0
ex sin

(2n− 1)πx

2
dx

= 2e(−1)n+1 + (2n− 1)π − (2n− 1)2π2

2

fn
2
.

Then [
1 +

(2n− 1)2π2

4

]
fn = 2e(−1)n+1 + (2n− 1)π =⇒ fn =

(2n− 1)π − (−1)n2e

1 + π2
(
n− 1

2

)2 .


