uc3m Universidad Carlos III de Madrid

APPLIED DIFFERENTIAL CALCULUS
LECTURE 5: Fourier series and separation of variables: Heat equation. PROBLEMS

Authors:
Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Consider the following model of heat equation

$$
\begin{array}{rll}
\text { Partial Differential Equation (PDE) }: & \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial u}{\partial t}(x, t), t>0,0<x<\pi / 3, \\
\text { Boundary Conditions (BCs) }: & \frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(\pi / 3, t)=0, t>0, \\
\text { Initial Condition (IC) }: & u(x, 0)=2 x+1,0 \leq x \leq \pi / 3 .
\end{array}
$$

Apply the separation of variables $u(x, t)=X(x) T(t) \not \equiv 0$. Then:
(i) Prove that $X(x)$ satisfies the boundary value problem

$$
X^{\prime \prime}+\lambda X=0 ; \quad X^{\prime}(0)=0, \quad X^{\prime}(\pi / 3)=0,
$$

and find the values of the separation constant $\lambda \geq 0$ yielding non-zero solutions.
(ii) Knowing that the solution $u(x, t)$ can be expressed as

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-9 n^{2} t} \cos (3 n x), \quad \text { with } \quad A_{n} \in \mathbb{R}
$$

find an approximate value for $u(\pi / 6,1 / 9)$, using only the first three terms of the series.

NOTE. The following result may be useful.
Given $L>0$ and $m, n \in \mathbb{N} \cup\{0\}$, we have $\int_{0}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) \mathrm{d} x= \begin{cases}0, & m \neq n \\ L / 2, & m=n \neq 0 \\ L, & m=n=0 .\end{cases}$

Problem 2 Find the solution of the following problem.

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0, u(1, t)=0, t>0
\end{aligned} \begin{aligned}
& u(x, 0)=u_{0}(x)= \begin{cases}1, & x<1 / 2 \\
0, & x \geq 1 / 2\end{cases}
\end{aligned}
$$

Problem 3 Let $f(x)=x$ be a function on the interval $(-1 ;, 1)$.

1. Calculate the Fourier coefficients of $f(x)$ (Hint. Since $f(x)$ is odd, use only sine terms: $\left.f(x)=\sum_{n=1}^{\infty} A_{n} \sin (\pi n x)\right)$.
2. Is it possible to differentiate the resulting series term by term in order to obtain the Fourier expansion of the derivative $f^{\prime}(x)$. Why or why not?
3. Since $f(x)$ is odd, $f^{\prime}(x)$ is even and its Fourier expansion is $f^{\prime}(x)=B_{0}+\sum_{n=1}^{\infty} B_{n} \cos (\pi n x)$. Express the coefficients B_{n} of $f^{\prime}(x)$ through the coefficients A_{n} of $f(x)$ using the correct formula for the Fourier series of $f^{\prime}(x)$. Calculate B_{n} and B_{0}.

Problem 4 Solve the following initial value problem for the heat equation:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t)=0 \\
& u(x, 0)=u_{0}(x)= \begin{cases}1, & x<1 / 2 \\
0, & x \geq 1 / 2\end{cases}
\end{aligned}
$$

Hint: The boundary conditions correspond to insulated ends. Therefore a stationary solution is a constant equal to the average value of $u_{0}(x)$, which is $1 / 2$. Thus your solution should tend to $1 / 2$ as tends to infinity.

Problem 5 Find the solution of the following initial boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=\cos (\pi t), u(1, t)=0, t>0 ; u(x, 0)=0
\end{aligned}
$$

Problem 6 Solve the following initial boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-2, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0, u(1, t)=0, t>0 \\
& u(x, 0)=0
\end{aligned}
$$

