uc3m Universidad Carlos III de Madrid

APPLIED DIFFERENTIAL CALCULUS
LECTURE 5: Fourier series and separation of variables: Heat equation. PROBLEMS

Authors:
Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Consider the following model of heat equation

$$
\begin{array}{rll}
\text { Partial Differential Equation (PDE) }: & \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial u}{\partial t}(x, t), t>0,0<x<\pi / 3, \\
\text { Boundary Conditions (BCs) }: & \frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(\pi / 3, t)=0, t>0, \\
\text { Initial Condition (IC) }: & u(x, 0)=2 x+1,0 \leq x \leq \pi / 3 .
\end{array}
$$

Apply the separation of variables $u(x, t)=X(x) T(t) \not \equiv 0$. Then:
(i) Prove that $X(x)$ satisfies the boundary value problem

$$
X^{\prime \prime}+\lambda X=0 ; \quad X^{\prime}(0)=0, \quad X^{\prime}(\pi / 3)=0,
$$

and find the values of the separation constant $\lambda \geq 0$ yielding non-zero solutions.
(ii) Knowing that the solution $u(x, t)$ can be expressed as

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-9 n^{2} t} \cos (3 n x), \quad \text { with } \quad A_{n} \in \mathbb{R}
$$

find an approximate value for $u(\pi / 6,1 / 9)$, using only the first three terms of the series.

NOTE. The following result may be useful.
Given $L>0$ and $m, n \in \mathbb{N} \cup\{0\}$, we have $\int_{0}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) \mathrm{d} x= \begin{cases}0, & m \neq n \\ L / 2, & m=n \neq 0 \\ L, & m=n=0 .\end{cases}$

SOLUTION:

(i) By applying the separation of variables, we obtain $\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=-\lambda$, where λ is the separation constant. Hence $X^{\prime \prime}+\lambda X=0$. In addition, by using the BCs we get

$$
\begin{gathered}
\frac{\partial u}{\partial x}(0, t)=X^{\prime}(0) T(t)=0 \Longrightarrow X^{\prime}(0)=0, \text { holding } \forall t \text { and } T(t) \not \equiv 0 \\
\frac{\partial u}{\partial x}(\pi / 3, t)=X^{\prime}(\pi / 3) T(t)=0 \Longrightarrow X^{\prime}(\pi / 3)=0, \text { holding } \forall t \text { and } T(t) \not \equiv 0
\end{gathered}
$$

Let us now distinguish two cases.
Case 1. $\lambda=0$ $X^{\prime \prime}=0 \Longrightarrow X(x)=c_{1} x+c_{2}$ with $c_{1}, c_{2} \in \mathbb{R}$. As $X^{\prime}(x)=c_{1}$, we have that $X^{\prime}(0)=0=$ $c_{1}=X^{\prime}(\pi / 3)$. Hence, if $\lambda=0$ then the function $X(x)=c_{2} \neq 0$ is a nonzero solution of the problem.

Case 2. $\lambda>0$
Let us take $\lambda=a^{2}$, with $a>0$. The corresponding characteristic equation is then $r^{2}+a^{2}=$ $0 \Longrightarrow r= \pm i a, i \in \mathbb{C}$. Hence

$$
X(x)=c_{1} \cos (a x)+c_{2} \sin (a x) ; \quad X^{\prime}(x)=-a c_{1} \sin (a x)+a c_{2} \cos (a x), \text { with } c_{1}, c_{2} \in \mathbb{R} .
$$

Applying the BCs we get $X^{\prime}(0)=0 \Longrightarrow c_{2}=0 ; X^{\prime}(\pi / 3)=0 \Longrightarrow-a c_{1} \sin (a \pi / 3)=0$. Then, imposing $c_{1} \neq 0$ yields $\sin (a \pi / 3)=0 \Longrightarrow a \pi / 3=n \pi \Longrightarrow a=3 n, n=1,2,3, \ldots$. Finally, $\lambda=(3 n)^{2}=9 n^{2}, n=1,2,3, \ldots$.
(ii) We need to calculate

$$
u(\pi / 6,1 / 9) \approx A_{0}+A_{1} e^{-1} \cos (\pi / 2)+A_{2} e^{-4} \cos (\pi)=A_{0}-\frac{A_{2}}{e^{4}} .
$$

In order to compute the coefficients A_{0} and A_{2}, let us apply the IC as to get

$$
u(x, 0)=\sum_{n=0}^{\infty} A_{n} \cos (3 n x)=2 x+1 \equiv f(x) .
$$

In addition, using the orthogonality condition suggested in the note, we deduce that the coefficients A_{n} satisfy

$$
\begin{gathered}
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x=\frac{3}{\pi} \int_{0}^{\pi / 3}(2 x+1) d x=1+\pi / 3 \\
(n \geq 1) \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos (3 n x) d x=\frac{6}{\pi} \int_{0}^{\pi / 3}(2 x+1) \cos (3 n x) d x \\
\Longrightarrow A_{2}=\frac{6}{\pi} \int_{0}^{\pi / 3}(2 x+1) \cos (6 x) d x=\frac{1}{\pi}\left[(2 x+1) \sin (6 x)+\frac{1}{3} \cos (6 x)\right]_{0}^{\pi / 3}=0 .
\end{gathered}
$$

Hence, the desired approximation is $u(\pi / 6,1 / 9) \approx 1+\pi / 3$.

Problem 2 Find the solution of the following problem.

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0, u(1, t)=0, t>0
\end{aligned}, \begin{aligned}
& 1, x<1 / 2 \\
& u(x, 0)=u_{0}(x)= \begin{cases}1,2\end{cases}
\end{aligned}
$$

SOLUTION:

Separation of variables, $u=X(x) T(t)$, yields $\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=-\lambda$, from which we obtain the eigenvalue problem: $X^{\prime \prime}+\lambda X=0$, with boundary conditions $X^{\prime}(0)=0, X(1)=0$. The general solution $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$ produces $c_{2}=0$ and then $\cos \sqrt{\lambda}=0$. Therefore,

$$
\sqrt{\lambda}=\left(n-\frac{1}{2}\right) \pi \Longrightarrow \lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4}, \quad n=1,2, \ldots
$$

and the corresponding eigenfunctions are

$$
X_{n}(x)=\cos \frac{(2 n-1) \pi x}{2}
$$

We now solve the equation for $T(t): T_{n}^{\prime}=-\lambda_{n} T$, which results in $T_{n}=e^{-\lambda_{n} t}$. By using the superposition principle, we obtain the following general form of the solution:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-(2 n-1)^{2} \pi^{2} t / 4} \cos \frac{(2 n-1) \pi x}{2} .
$$

The initial condition yields:

$$
\sum_{n=1}^{\infty} a_{n} \cos \frac{(2 n-1) \pi x}{2}= \begin{cases}1, & 0<x<\frac{1}{2}, \\ 0, & \frac{1}{2}<x<1 .\end{cases}
$$

The orthogonality condition for this cosine Fourier series yields

$$
a_{n}=2 \int_{0}^{1 / 2} \cos \frac{(2 n-1) \pi x}{2} d x=\left.\frac{4}{(2 n-1) \pi} \sin \frac{(2 n-1) \pi x}{2}\right|_{0} ^{1 / 2}=\frac{4}{(2 n-1) \pi} \sin \frac{(2 n-1) \pi}{4} .
$$

Thus the solution is

$$
u(x, t)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin \frac{(2 n-1) \pi}{4} e^{-(2 n-1)^{2} \pi^{2} t / 4} \cos \frac{(2 n-1) \pi x}{2} .
$$

Problem 3 Let $f(x)=x$ be a function on the interval $(-1 ;, 1)$.

1. Calculate the Fourier coefficients of $f(x)$ (Hint. Since $f(x)$ is odd, use only sine terms: $\left.f(x)=\sum_{n=1}^{\infty} A_{n} \sin (\pi n x)\right)$.
2. Is it possible to differentiate the resulting series term by term in order to obtain the Fourier expansion of the derivative $f^{\prime}(x)$. Why or why not?
3. Since $f(x)$ is odd, $f^{\prime}(x)$ is even and its Fourier expansion is $f^{\prime}(x)=B_{0}+\sum_{n=1}^{\infty} B_{n} \cos (\pi n x)$. Express the coefficients B_{n} of $f^{\prime}(x)$ through the coefficients A_{n} of $f(x)$ using the correct formula for the Fourier series of $f^{\prime}(x)$. Calculate B_{n} and B_{0}.

SOLUTION:

1. General formulas for the Fourier series coefficients are:

$$
\begin{aligned}
B_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos (\pi n x / L) d x, \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin (\pi n x / L) d x .
\end{aligned}
$$

In our case, $L=1$ and only A_{n} survive; therefore we have:

$$
A_{n}=2 \int_{0}^{1} x \sin (\pi n x) d x=2\left(-\left.\frac{x \cos (\pi n x)}{\pi n}\right|_{0} ^{1}+\int_{0}^{1} \frac{\cos (\pi n x)}{\pi n} d x\right)=-2 \frac{(-1)^{n}}{\pi n}
$$

Thus the expansion is:

$$
f(x)=x=-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\pi n} \sin (\pi n x) .
$$

2. No, term by term differentiation does not yield the derivative $f^{\prime}(x)$ because $f(x)$ is not continuous at $x= \pm 1$. Indeed, $f(1)=1 \neq f(-1)=-1$.
3. In order to obtain correct formula for $f^{\prime}(x)$, we have to include boundary terms. This can be done in the following way:

$$
\begin{aligned}
B_{0} & =\frac{1}{2 L} \int_{-L}^{L} f^{\prime}(x) d x=\frac{1}{2 L}(f(L)-f(-L))=\frac{1}{2}(f(1)-f(-1))=1, \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} f^{\prime}(x) \cos (\pi n x / L) d x=\int_{-1}^{1} f^{\prime}(x) \cos (\pi n x) d x \\
& =\left.f(x) \cos (\pi n x)\right|_{-1} ^{1}+\pi n \int_{-1}^{1} f(x) \sin (\pi n x) d x=(-1)^{n}(f(1)-f(-1))+\pi n A_{n} \\
& =(-1)^{n} 2+\pi n \frac{-2(-1)^{n}}{\pi n}=0 .
\end{aligned}
$$

Note that the correct result $B_{n}=\delta_{n 0}$ differs from that given by term by term differentiation: $\pi n A_{n} \neq 2(-1)^{n}+\pi n A_{n}$. The difference occurs because $f(x)$ has different values at the ends of interval. Thus the formula for the derivative $f^{\prime}(x)$ is:

$$
f^{\prime}(x)=1 \neq-2 \sum_{n=1}^{\infty}(-1)^{n} \cos (\pi n x) .
$$

Problem 4 Solve the following initial value problem for the heat equation:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t)=0 \\
& u(x, 0)=u_{0}(x)= \begin{cases}1, & x<1 / 2 \\
0, & x \geq 1 / 2\end{cases}
\end{aligned}
$$

Hint: The boundary conditions correspond to insulated ends. Therefore a stationary solution is a constant equal to the average value of $u_{0}(x)$, which is $1 / 2$. Thus your solution should tend to $1 / 2$ as tends to infinity.

SOLUTION:

We will use method of separation of variables. Let $u(t, x)=T(t) X(x)$. Then after plugging it into the equation we obtain:

$$
T^{\prime} X=T X^{\prime \prime} \Rightarrow \frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda
$$

since left part depends only of t and right part only on x. For function $X(x)$ we have an eigenvalue problem:

$$
\begin{aligned}
& X^{\prime \prime}(x)+\lambda X(x)=0, x \in(0 ; 1) \\
& X^{\prime}(0)=X^{\prime}(1)=0 .
\end{aligned}
$$

The solution is:

$$
\begin{aligned}
& \lambda_{n}=(\pi n)^{2}, n \in \mathbb{N} \cup\{0\}, \\
& X_{0}(x)=1, \\
& X_{n}(x)=\sqrt{2} \cos (\pi n x), x \in \mathbb{N} .
\end{aligned}
$$

Thus we have the following ODEs for T_{n} :

$$
T_{n}^{\prime}+(\pi n)^{2} T_{n}=0, n \in \mathbb{N} \cup\{0\}
$$

with initial condition given by $T_{n}(0)=\int_{0}^{1} X_{n}(x) u_{0}(x) d x$ that is:

$$
\begin{aligned}
& T_{0}(0)=\frac{1}{2} \\
& T_{n}(0)=\int_{0}^{1 / 2} \sqrt{2} \cos (\pi n x) d x=\frac{\sqrt{2}}{\pi n} \sin (\pi n / 2)=\left\{\begin{array}{l}
0, n=2 k, k \in \mathbb{N}, \\
(-1)^{k-1} \frac{\sqrt{2}}{\pi(2 k-1)}, n=2 k-1, k \in \mathbb{N} .
\end{array}\right.
\end{aligned}
$$

Time dependent coefficients T_{n} now can be written as:

$$
\begin{aligned}
& T_{0}(t)=\frac{1}{2} \\
& T_{2 k}(t)=0, k \in \mathbb{N}, \\
& T_{2 k-1}(t)=-(-1)^{k} \frac{\sqrt{2}}{\pi(2 k-1)} e^{-(\pi(2 k-1))^{2} t}, k \in \mathbb{N}
\end{aligned}
$$

and the solution of the initial problem is:

$$
u(t, x)=\frac{1}{2}-\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{2 k-1} e^{-\pi^{2}(2 k-1)^{2} t} \cos [(2 k-1) \pi x] .
$$

This function indeed tends to $1 / 2$ as t tends to infinity.

Problem 5 Find the solution of the following initial boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=\cos (\pi t), u(1, t)=0, t>0 ; u(x, 0)=0
\end{aligned}
$$

SOLUTION:

We find a function $U(x, t)=a x+b$ such that

$$
\frac{\partial U}{\partial x}(0, t)=a=\cos \pi t, \quad U(1, t)=a+b=0 .
$$

We find $a=\cos \pi t, b=-\cos \pi t$. Substituting $u(x, t)=(x-1) \cos \pi t+v(x, t)$ in the heat equation, we obtain

$$
\frac{\partial v}{\partial t}-\frac{\partial^{2} v}{\partial x^{2}}=(x-1) \pi \sin \pi t, \quad \frac{\partial v}{\partial x}(0, t)=0, \quad v(1, t)=0, \quad v(x, 0)=1-x .
$$

The corresponding eigenvalues and eigenfunctions solve the problem $X^{\prime \prime}+\lambda X=0$, with boundary conditions $X^{\prime}(0)=0, X(1)=0$. The general solution $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$ produces $c_{2}=0$ and then $\cos \sqrt{\lambda}=0$. Therefore,

$$
\sqrt{\lambda}=\left(n-\frac{1}{2}\right) \pi \Longrightarrow \lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4}, \quad n=1,2, \ldots,
$$

and the corresponding eigenfunctions are

$$
X_{n}(x)=\cos \frac{(2 n-1) \pi x}{2} .
$$

We now substitute $v(x, t)=\sum_{n=1}^{\infty} A_{n}(t) \cos \frac{(2 n-1) \pi x}{2}$ in the non-homogeneous heat equation, thereby obtaining:

$$
A_{n}^{\prime}+\lambda_{n} A_{n}=2 \pi \sin \pi t \int_{0}^{1}(x-1) \cos \frac{(2 n-1) \pi x}{2} d x=-\frac{8}{(2 n-1)^{2} \pi} \sin \pi t,
$$

with initial condition:

$$
\begin{aligned}
A_{n}(0)=2 \int_{0}^{1}(1-x) \cos & \frac{(2 n-1) \pi x}{2} d x
\end{aligned}=\left.\frac{4(1-x)}{(2 n-1) \pi} \sin \frac{(2 n-1) \pi x}{2}\right|_{x=0} ^{1} .
$$

To find a particular solution, we insert: $A_{n}=a_{n} \cos \pi t+b_{n} \sin \pi t$ in the equation for A_{n} thereby getting

$$
\begin{aligned}
& \left(\lambda_{n}+\pi b_{n}\right) \cos \pi t+\left(\lambda_{n}-\pi a_{n}\right) \sin \pi t=-\frac{8}{(2 n-1)^{2} \pi} \sin \pi t \Longrightarrow \\
& \lambda_{n}+\pi b_{n}=0, \lambda_{n}-\pi a_{n}=-\frac{8}{(2 n-1)^{2} \pi} \Longrightarrow a_{n}=\frac{\lambda_{n}}{\pi}+\frac{8}{(2 n-1)^{2} \pi}, b_{n}=-\frac{\lambda_{n}}{\pi}
\end{aligned}
$$

Adding a solution of the homogeneous ODE, we find
$A_{n}(t)=\left(\frac{(2 n-1)^{2} \pi}{4}+\frac{8}{(2 n-1)^{2} \pi}\right)\left(\cos \pi t-e^{-(2 n-1)^{2} \pi^{2} t / 4}\right)-\frac{(2 n-1)^{2} \pi}{4} \sin \pi t+\frac{8 e^{-(2 n-1)^{2} \pi^{2} t / 4}}{(2 n-1)^{2} \pi^{2}}$.
Then

$$
\begin{aligned}
u(x, t) & =(x-1) \cos \pi t+\sum_{n=1}^{\infty}\left[\left(\frac{(2 n-1)^{2} \pi}{4}+\frac{8}{(2 n-1)^{2} \pi}\right)\left(\cos \pi t-e^{-(2 n-1)^{2} \pi^{2} t / 4}\right)\right. \\
& \left.-\frac{(2 n-1)^{2} \pi}{4} \sin \pi t+\frac{8 e^{-(2 n-1)^{2} \pi^{2} t / 4}}{(2 n-1)^{2} \pi^{2}}\right] \cos \frac{(2 n-1) \pi x}{2}
\end{aligned}
$$

Problem 6 Solve the following initial boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-2, x \in(0,1), t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0, u(1, t)=0, t>0 \\
& u(x, 0)=0
\end{aligned}
$$

SOLUTION:

A particular solution of the boundary value problem

$$
U^{\prime \prime}=2, \quad U^{\prime}(0)=0, U(1)=0,
$$

is $U(x)=x^{2}-1$. Then $v(x, t)=u(x, t)-U(x)$ satisfies the homogeneous heat equation with homogeneous boundary conditions and different initial condition: $v(x, 0)=1-x^{2}$. We find the following eigenvalue problem for $X(x)$ after separating variables by $u(x, t)=X(x) T(t)$:

$$
X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=0, \quad X(1)=0 .
$$

The general solution of the ODE, $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$, produces $X^{\prime}(0)=\sqrt{\lambda} c_{2}=0$, and $X(1)=c_{1} \sin \sqrt{\lambda}=0$. Then $\sqrt{\lambda}=n \pi, n=1,2, \ldots$. The function $T(t)$ satisfies $T^{\prime}+\lambda T=0$. Its solution is $T=e^{-\lambda t}=e^{-n^{2} \pi^{2} t}$. Using now the superposition principle, we obtain

$$
v(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-n^{2} \pi^{2} t} \sin (n \pi x) \Longrightarrow v(x, 0)=1-x^{2}=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x) .
$$

Then

$$
\begin{aligned}
A_{n} & =2 \int_{0}^{1}\left(1-x^{2}\right) \sin (n \pi x) d x=-\left.\frac{2\left(1-x^{2}\right)}{n \pi} \cos (n \pi x)\right|_{0} ^{1}-\frac{4}{n \pi} \int_{0}^{1} x \cos (n \pi x) d x \\
& =\frac{2}{n \pi}-\left.\frac{4 x}{n^{2} \pi^{2}} \sin (n \pi x)\right|_{0} ^{1}+\frac{4}{n^{2} \pi^{2}} \int_{0}^{1} \sin (n \pi x) d x=\frac{2}{n \pi}+\frac{4}{n^{3} \pi^{3}}[1-\cos (n \pi)]
\end{aligned}
$$

We therefore find

$$
u(x, t)=\left(x^{2}-1\right)+\frac{2}{\pi} \sum_{n=1}^{\infty}\left(1+\frac{2\left[1-(-1)^{n}\right]}{n^{2} \pi^{2}}\right) \frac{e^{-n^{2} \pi^{2} t}}{n} \sin (n \pi x)
$$

