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APPLIED DIFFERENTIAL CALCULUS
LECTURE 5: Fourier series and separation of variables: Heat equation.
PROBLEMS
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Problem 1 Consider the following model of heat equation

2 0
Partial Differential Equation (PDE) : %(m, t) = a—z(x, t), t>0, 0<z<m/3,
x
0 0
Boundary Conditions (BCs) : —u(O,t) =0, —u(w/?y,t) =0, t>0,
Ox Ox
Initial Condition (IC) u(z,0)=2zx+1, 0<z<m7/3.

Apply the separation of variables u(x,t) = X (z)T(t) #0. Then:

(i) Prove that X (x) satisfies the boundary value problem
X"+ AX =0; X'(0)=0, X'(n/3)=0,
and find the values of the separation constant A\ > 0 yielding non-zero solutions.

(ii) Knowing that the solution u(z,t) can be expressed as
[e.e]
2
u(x,t) = ZA” e " cos (3nz), with A, €R,
n=0
find an approximate value for u(7/6,1/9), using only the first three terms of the series.

NOTE. The following result may be useful.

L
Given L > 0 and m,n € NU{0}, we have / cos(%x)cos(%x)dx: L/2, m=n#0
0



SOLUTION:

T/ X//
(i) By applying the separation of variables, we obtain — = ~x = —A, where ) is the separation
constant. Hence X” + AX = 0. In addition, by using the BCs we get
0
a%“”” — X'(0)T(t) =0 = X'(0) =0, holding V¢ and T(t) £ 0;
%(W/S,t) = X'(n/3)T(t) =0 = X'(7/3) =0, holding V¢ and T'(t) # 0.

Let us now distinguish two cases.
Case 1. A =0

X"=0= X(z) =cix+co with ¢;,c0 € R. As X'(z) = ¢1, we have that X'(0) =0 =
¢1 = X'(m/3) . Hence, if then the function X (z) = ¢3 # 0 is a nonzero solution of the
problem.

Case 2. A >0

Let us take A = a?, with a > 0. The corresponding characteristic equation is then r? 4 a? =
0 = r ==ia, i € C. Hence

X(x) = ¢y cos(ax) + cosin(ar); X'(x) = —acy sin(ax) + acy cos(az), with ¢1,co € R.

Applying the BCs we get X'(0) =0 = ¢ =0; X'(7/3) =0 = —acysin(an/3) = 0.
Then, imposing ¢; # 0 yields sin(an/3) =0 = ar/3=nmr = a=3n, n=1,23,....
Finally, | A = (3n)? =9n?, n=1,2,3,...].

(ii) We need to calculate

u(7r/6, 1/9) ~ Ay + Ale_l COS(7T/2) + A26_4 COS(’]T) = Ay — ii .
e

In order to compute the coefficients Ay and Ao, let us apply the IC as to get
oo
u(z,0) = ZA" cos (3nx) =2z +1 = f(x).
n=0

In addition, using the orthogonality condition suggested in the note, we deduce that the
coefficients A,, satisfy

1 L 3 w/3
Ao_/ f(x)d:):—/ (2 + 1)dz = 14 7/3,
L J ™ Jo

9 L 6 /3
(n>1) A, = / f(z) cos(3nz)dx = / (2x + 1) cos(3nx)dx
L Jo T Jo
6 [/3 1 1 "/
= Ay = / (2x 4+ 1) cos(b6z)dr = — [(2:10 + 1) sin(6z) + - cos(6x)} =0.
T Jo m 3 0

Hence, the desired approximation is "LL(T['/G, 1/9) =1+ m/3 ‘




Problem 2 Find the solution of the following problem.

ou  0*u
— = = 0,1), t>0
5~ 520 £ 01), t>
ou
—(0,¢) =0 1,) =0, t>0
(0.0 =0, u(1,6) =0, t>
1, z<1/2,
,0) = =
u(z,0) = uo(x) {07 s
SOLUTION:
Separation of variables, u = X (x)T'(t), yields TT, = XTN = —), from which we obtain the eigenvalue

problem: X” 4+ AX = 0, with boundary conditions X’(0) = 0, X (1) = 0. The general solution
X = ¢1 cos(V\z) + ¢z sin(v/Ax) produces ¢z = 0 and then cos v/A = 0. Therefore,

1 o2n — 1)272
V= <n—2>7T:>)\n—(n4)7T7 n=12,...,

and the corresponding eigenfunctions are

2n — V)mx

X (z) = cos ( 5

We now solve the equation for T(t): T = —\,T, which results in T;, = e~*#!. By using the
superposition principle, we obtain the following general form of the solution:

> (2n — 1)z
- 122 —
u(x,t) = Zane (@n=1)"%t/4 ¢og —
n=1
The initial condition yields:
> (2n — )7z 1, 0<z<s3,
Z Qp COS ——————— = 1
n=1
The orthogonality condition for this cosine Fourier series yields

1/2 on — 1 4 o — 1
an, :2/ COSde: iy (20— D)
0

1/2 4 . (2n—1)m
= sin .

o . @n—Dr 1

2 (2n— )7 2

Thus the solution is

o0

4 1 o (2n =17
>y ( )

e (2n=1)2m2t/4 o (2n — Dma

u(x,t) = — 12n_lsm 1 5

™




Problem 3 Let f(z) = x be a function on the interval (—1;,1).

1. Calculate the Fourier coefficients of f(x) (Hint. Since f(z) is odd, use only sine terms:

flx) =>"0" Apsin(mnz)).

2. Is it possible to differentiate the resulting series term by term in order to obtain the Fourier
expansion of the derivative f’(z). Why or why not?

3. Since f(x) is odd, f’(x) is even and its Fourier expansion is f’(z) = By + Y .- By cos(mnz).

Express the coefficients By, of f'(z) through the coefficients A, of f(x) using the correct
formula for the Fourier series of f'(z). Calculate B,, and By.

SOLUTION:

1. General formulas for the Fourier series coeflicients are:

1 L
By = — d
0 2L/_Lf(x) €z,

B, = E/LL f(x) cos(mnz/L) dz,

1 [r ,
A, = T /_L f(z)sin(mnz/L) dx.

In our case, L = 1 and only A, survive; therefore we have:
1 1
_1)n
+/ cos(mnz) da:) _ _2( ) .
o Jo ™ ™

fl)=2=-2 Z (=" sin(mnx).

™

x cos(mnax)

™

1
A, = 2/ xsin(rnz) dr = 2<—
0

Thus the expansion is:

n=1

2. No, term by term differentiation does not yield the derivative f’(z) because f(x) is not
continuous at x = £1. Indeed, f(1) =1# f(—-1) = —1.

3. In order to obtain correct formula for f’(x), we have to include boundary terms. This can be
done in the following way:

L
Bo= g7 [ 1@ da =55 (1) = F=1) = 5 () = (1) = 1,
1 L / . ! /
B, = T /Lf () cos(mnx/L) dx = /1 f'(z) cos(mnz) dx

1
= f(x) cos(mnz)|t | + wn/_l f(z)sin(mnz) de = (=1)"(f(1) — f(—1)) + mnA,

~2(-1)"

= (—1)"2
(=1)"2 4 7n —

=0.



Note that the correct result B,, = d, differs from that given by term by term differentiation:
™Ay, # 2(—1)" + mnA,. The difference occurs because f(x) has different values at the ends
of interval. Thus the formula for the derivative f’(x) is:

flla)=1# -2 Z(—l)” cos(mnz).
n=1

Problem 4 Solve the following initial value problem for the heat equation:

0 0?
67?:67;;, 1'6(0,1), t>0,

ou ou

R — = — 1 =
5, (0ot) = 5-(1,8) =0,
1, . <1/2,

0, z>1/2.

u(z,0) = up(z) = {

Hint: The boundary conditions correspond to insulated ends. Therefore a stationary solution is a
constant equal to the average value of ug(x), which is 1/2. Thus your solution should tend to 1/2
as t tends to infinity.

SOLUTION:

We will use method of separation of variables. Let u(t,z) = T(t)X (x). Then after plugging it into
the equation we obtain:

() X"(z)

Tt X 7

since left part depends only of ¢ and right part only on z. For function X (x) we have an eigenvalue
problem:

T'X =TX" =

X"(z) + XX (z) =0, z € (0;1)
X'(0) = X'(1) = 0.
The solution is:

A = (7n)?%, n e NU {0},
Xo(l‘) = 1,
X, (z) = V2cos(mnz), = € N.

Thus we have the following ODEs for T,,:
T + (7n)?T, = 0, n € NU {0},

with initial condition given by 7,,(0) = fol Xn(z)uo(x) dr that is:

0, n=2k keN,

V2
m(2k —1)

1/2
T,.(0) = \/icos(ﬂ'nx) dr = Q sin(7n/2) =

0 ™m (—1)+t ,n=2k—1, keN.



Time dependent coefficients T,, now can be written as:

1
TO(t) = 57

TZk(t) =0, keN,

V2 on
TﬁFlﬁ):—4—1ﬁ%Ei:jﬁe (m(Z=1))%t } e N

and the solution of the initial problem is:

u(t,x) =

3

= (—1)k —m2(2k—1)2t
E e " cos[(2k — 1)mx].
— 2k —1

N

This function indeed tends to 1/2 as ¢ tends to infinity.

Problem 5 Find the solution of the following initial boundary value problem:

ou  9*u

—_— = 0,1), t>0

ot ~on2 “EOD, >0,

ou

%(O,t) = cos(nt), u(l,t) =0, t>0; u(x,0)=0.
SOLUTION:
We find a function U(z,t) = ax + b such that

ZU(O,t) =a=cosmt, U(l,t)=a+b=0.
x

We find a = coswt, b = — cos wt. Substituting u(z,t) = (z — 1) cos nt +v(x, t) in the heat equation,
we obtain

0 0? 0

8—1} - a—xz = (x — 1)mwsin~t, é(o,t) =0, v(l,t)=0, ov(z,0)=1-u=z.

The corresponding eigenvalues and eigenfunctions solve the problem X” + AX = 0, with boundary
conditions X'(0) = 0, X(1) = 0. The general solution X = ¢; cos(v/Az) + ¢z sin(v/Az) produces
¢o = 0 and then cos VA = 0. Therefore,

1 2n — 1)2x?
VW T PG W C U R I
2 4
and the corresponding eigenfunctions are

Xn(z) = cos M

We now substitute v(x,t) = > o2 | Ay, (t) cos (2n;1)ﬂx in the non-homogeneous heat equation, thereby

obtaining;:

! 2n — 1
Al + M\ Ap = 27 sin 7Tt/ (x — 1) cos Mdm =
0

2 2n— 127 70



with initial condition:
n—1)rx 4(1 —x) (2n — V)mz|!

! (2 :
An(0) = 2/0 (1 —x)cos 5 dx = Gn—1)r sin 5 »

N 4 /1 sin (2n — 1)7T:de B 8
(2n — )7 J, 2 ©(2n —1)272°

To find a particular solution, we insert: A, = a,cosnt + b, sinnwt in the equation for A, thereby
getting

8
(An + by cos it + (N, — Tay,) sinwt = “@n -1 sin 7t =
8 An 8 An
A+ 7hy =0, Ny —ap =— 5= ap=—+ 5 bp = ——.
o 0 e (2n —1)%7 “ . (2n —1)%w T

Adding a solution of the homogeneous ODE, we find

(2n —1)%x 8 (o 1)2? (2n — 1)1 | ge—(2n—1)2nt/4
A,(t) = t— (2n—1)2m2t/4y \&lt— 1) 7 g 0
(t) ( 1 + @n—1)2r (cosmt—e ) 1 sin 7t + @n 12
Then
[ [ (2n — 1) 8
u(e,t) = m—mmm+;16”4>”+QWJWJ@%m_fm4WW%

(2n —1)°n ge~(n-1wt/4 ] (9n — 1)z
- sinmt + 2n— 1272 cos 5 .

Problem 6 Solve the following initial boundary value problem:

ou 0%

o o > v, >0
ou

- e 1 —
CH0.0) =0, u(l) =0, >0,
u(z,0) =0.

SOLUTION:
A particular solution of the boundary value problem

U” =2, U'(0)=0,U(1)=0,

is U(x) = 22 — 1. Then v(z,t) = u(z,t) — U(x) satisfies the homogeneous heat equation with

homogeneous boundary conditions and different initial condition: v(x,0) = 1 — x2. We find the

following eigenvalue problem for X (z) after separating variables by u(x,t) = X (z)T'(¢):
X"+AX =0, X'(0)=0, X(1)=0.

The general solution of the ODE, X = ¢; cos(vVAz) + cosin(v/Az), produces X’ (0) = vAcy = 0,
and X (1) = ¢;sinv/A = 0. Then VA = nm, n =1,2,.... The function T'(t) satisfies T" + \T = 0.
Its solution is T = e~ = ¢~n*7"1, Using now the superposition principle, we obtain

v(x,t) = Z Ape 7t sin(nrr) = v(x,0) =1 — 2% = Z Ay sin(nrx).
n=1

n=1



Then
1

1 2 1
2(1 — 4
A, = 2/ (1 — 2?)sin(nrz)dr = Gt cos(nmz)| — / x cos(nmx)dx
0 nm 0 nm Jo
2 Az oot 2 4
P sin(nmx) ) + 32 /0 sin(nma)dz e + n37r3[ cos(nm)]

We therefore find

u(x,t) = (2% — 1) + % Z (1 + 20— (_21)”]> 7 sin(nmz).

n2m n
n=1




