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Problem 1 Consider the following model of heat equation

Partial Differential Equation (PDE) :
∂2u

∂x2
(x, t) =

∂u

∂t
(x, t) , t > 0 , 0 < x < π/3 ,

Boundary Conditions (BCs) :
∂u

∂x
(0, t) = 0 ,

∂u

∂x
(π/3, t) = 0 , t > 0 ,

Initial Condition (IC) : u(x, 0) = 2x+ 1 , 0 ≤ x ≤ π/3 .

Apply the separation of variables u(x, t) = X(x)T (t) 6≡ 0 . Then:

(i) Prove that X(x) satisfies the boundary value problem

X ′′ + λX = 0 ; X ′(0) = 0 , X ′(π/3) = 0 ,

and find the values of the separation constant λ ≥ 0 yielding non-zero solutions.

(ii) Knowing that the solution u(x, t) can be expressed as

u(x, t) =

∞∑
n=0

An e
−9n2t cos (3nx) , with An ∈ R ,

find an approximate value for u(π/6, 1/9), using only the first three terms of the series.

NOTE. The following result may be useful.

Given L > 0 andm,n ∈ N∪{0} , we have

∫ L

0
cos
(mπ
L
x
)

cos
(nπ
L
x
)

dx =


0 , m 6= n

L/2 , m = n 6= 0

L , m = n = 0 .



SOLUTION:

(i) By applying the separation of variables, we obtain
T ′

T
=
X ′′

X
= −λ , where λ is the separation

constant. Hence X ′′ + λX = 0 . In addition, by using the BCs we get

∂u

∂x
(0, t) = X ′(0)T (t) = 0 =⇒ X ′(0) = 0 , holding ∀t and T (t) 6≡ 0 ;

∂u

∂x
(π/3, t) = X ′(π/3)T (t) = 0 =⇒ X ′(π/3) = 0 , holding ∀t and T (t) 6≡ 0 .

Let us now distinguish two cases.
Case 1. λ = 0

X ′′ = 0 =⇒ X(x) = c1x + c2 with c1 , c2 ∈ R . As X ′(x) = c1 , we have that X ′(0) = 0 =

c1 = X ′(π/3) . Hence, if λ = 0 then the function X(x) = c2 6= 0 is a nonzero solution of the
problem.

Case 2. λ > 0

Let us take λ = a2 , with a > 0 . The corresponding characteristic equation is then r2 + a2 =
0 =⇒ r = ±ia , i ∈ C . Hence

X(x) = c1 cos(ax) + c2 sin(ax) ; X ′(x) = −ac1 sin(ax) + ac2 cos(ax) , with c1 , c2 ∈ R .

Applying the BCs we get X ′(0) = 0 =⇒ c2 = 0 ; X ′(π/3) = 0 =⇒ −ac1 sin(aπ/3) = 0 .
Then, imposing c1 6= 0 yields sin(aπ/3) = 0 =⇒ aπ/3 = nπ =⇒ a = 3n , n = 1, 2, 3, . . . .

Finally, λ = (3n)2 = 9n2 , n = 1, 2, 3, . . . .

(ii) We need to calculate

u(π/6, 1/9) ≈ A0 +A1e
−1 cos(π/2) +A2e

−4 cos(π) = A0 −
A2

e 4
.

In order to compute the coefficients A0 and A2 , let us apply the IC as to get

u(x, 0) =
∞∑
n=0

An cos (3nx) = 2x+ 1 ≡ f(x) .

In addition, using the orthogonality condition suggested in the note, we deduce that the
coefficients An satisfy

A0 =
1

L

∫ L

0
f(x)dx =

3

π

∫ π/3

0
(2x+ 1)dx = 1 + π/3 ,

(n ≥ 1) An =
2

L

∫ L

0
f(x) cos(3nx)dx =

6

π

∫ π/3

0
(2x+ 1) cos(3nx)dx

=⇒ A2 =
6

π

∫ π/3

0
(2x+ 1) cos(6x)dx =

1

π

[
(2x+ 1) sin(6x) +

1

3
cos(6x)

]π/3
0

= 0 .

Hence, the desired approximation is u(π/6, 1/9) ≈ 1 + π/3 .



Problem 2 Find the solution of the following problem.

∂u

∂t
=
∂2u

∂x2
, x ∈ (0, 1) , t > 0

∂u

∂x
(0, t) = 0 , u(1, t) = 0 , t > 0

u(x, 0) = u0(x) =

{
1, x < 1/2,

0, x ≥ 1/2.

SOLUTION:
Separation of variables, u = X(x)T (t), yields T ′

T = X′′

X = −λ, from which we obtain the eigenvalue
problem: X ′′ + λX = 0, with boundary conditions X ′(0) = 0, X(1) = 0. The general solution
X = c1 cos(

√
λx) + c2 sin(

√
λx) produces c2 = 0 and then cos

√
λ = 0. Therefore,

√
λ =

(
n− 1

2

)
π =⇒ λn =

(2n− 1)2π2

4
, n = 1, 2, . . . ,

and the corresponding eigenfunctions are

Xn(x) = cos
(2n− 1)πx

2
.

We now solve the equation for T (t): T ′n = −λnT , which results in Tn = e−λnt. By using the
superposition principle, we obtain the following general form of the solution:

u(x, t) =

∞∑
n=1

ane
−(2n−1)2π2t/4 cos

(2n− 1)πx

2
.

The initial condition yields:

∞∑
n=1

an cos
(2n− 1)πx

2
=

{
1, 0 < x < 1

2 ,
0, 1

2 < x < 1.

The orthogonality condition for this cosine Fourier series yields

an = 2

∫ 1/2

0
cos

(2n− 1)πx

2
dx =

4

(2n− 1)π
sin

(2n− 1)πx

2

∣∣∣∣1/2
0

=
4

(2n− 1)π
sin

(2n− 1)π

4
.

Thus the solution is

u(x, t) =
4

π

∞∑
n=1

1

2n− 1
sin

(2n− 1)π

4
e−(2n−1)

2π2t/4 cos
(2n− 1)πx

2
.



Problem 3 Let f(x) = x be a function on the interval (−1; , 1).

1. Calculate the Fourier coefficients of f(x) (Hint. Since f(x) is odd, use only sine terms:
f(x) =

∑∞
n=1An sin(πnx)).

2. Is it possible to differentiate the resulting series term by term in order to obtain the Fourier
expansion of the derivative f ′(x). Why or why not?

3. Since f(x) is odd, f ′(x) is even and its Fourier expansion is f ′(x) = B0 +
∑∞

n=1Bn cos(πnx).
Express the coefficients Bn of f ′(x) through the coefficients An of f(x) using the correct
formula for the Fourier series of f ′(x). Calculate Bn and B0.

SOLUTION:

1. General formulas for the Fourier series coefficients are:

B0 =
1

2L

∫ L

−L
f(x) dx,

Bn =
1

L

∫ L

−L
f(x) cos(πnx/L) dx,

An =
1

L

∫ L

−L
f(x) sin(πnx/L) dx.

In our case, L = 1 and only An survive; therefore we have:

An = 2

∫ 1

0
x sin(πnx) dx = 2

(
− x cos(πnx)

πn

∣∣∣∣1
0

+

∫ 1

0

cos(πnx)

πn
dx

)
= −2

(−1)n

πn
.

Thus the expansion is:

f(x) = x = −2
∞∑
n=1

(−1)n

πn
sin(πnx).

2. No, term by term differentiation does not yield the derivative f ′(x) because f(x) is not
continuous at x = ±1. Indeed, f(1) = 1 6= f(−1) = −1.

3. In order to obtain correct formula for f ′(x), we have to include boundary terms. This can be
done in the following way:

B0 =
1

2L

∫ L

−L
f ′(x) dx =

1

2L
(f(L)− f(−L)) =

1

2
(f(1)− f(−1)) = 1,

Bn =
1

L

∫ L

−L
f ′(x) cos(πnx/L) dx =

∫ 1

−1
f ′(x) cos(πnx) dx

= f(x) cos(πnx)|1−1 + πn

∫ 1

−1
f(x) sin(πnx) dx = (−1)n(f(1)− f(−1)) + πnAn

= (−1)n2 + πn
−2(−1)n

πn
= 0.



Note that the correct result Bn = δn0 differs from that given by term by term differentiation:
πnAn 6= 2(−1)n + πnAn. The difference occurs because f(x) has different values at the ends
of interval. Thus the formula for the derivative f ′(x) is:

f ′(x) = 1 6= −2
∞∑
n=1

(−1)n cos(πnx).

Problem 4 Solve the following initial value problem for the heat equation:

∂u

∂t
=
∂2u

∂x2
, x ∈ (0, 1), t > 0,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0,

u(x, 0) = u0(x) =

{
1, x < 1/2,

0, x ≥ 1/2.

Hint: The boundary conditions correspond to insulated ends. Therefore a stationary solution is a
constant equal to the average value of u0(x), which is 1/2. Thus your solution should tend to 1/2
as t tends to infinity.

SOLUTION:
We will use method of separation of variables. Let u(t, x) = T (t)X(x). Then after plugging it into
the equation we obtain:

T ′X = TX ′′ ⇒ T ′(t)

T (t)
=
X ′′(x)

X(x)
= −λ,

since left part depends only of t and right part only on x. For function X(x) we have an eigenvalue
problem:

X ′′(x) + λX(x) = 0, x ∈ (0; 1)

X ′(0) = X ′(1) = 0.

The solution is:

λn = (πn)2, n ∈ N ∪ {0},
X0(x) = 1,

Xn(x) =
√

2 cos(πnx), x ∈ N.

Thus we have the following ODEs for Tn:

T ′n + (πn)2Tn = 0, n ∈ N ∪ {0},

with initial condition given by Tn(0) =
∫ 1
0 Xn(x)u0(x) dx that is:

T0(0) =
1

2
,

Tn(0) =

∫ 1/2

0

√
2 cos(πnx) dx =

√
2

πn
sin(πn/2) =


0, n = 2k, k ∈ N,

(−1)k−1
√

2

π(2k − 1)
, n = 2k − 1, k ∈ N.



Time dependent coefficients Tn now can be written as:

T0(t) =
1

2
,

T2k(t) = 0, k ∈ N,

T2k−1(t) = −(−1)k
√

2

π(2k − 1)
e−(π(2k−1))

2t, k ∈ N

and the solution of the initial problem is:

u(t, x) =
1

2
− 2

π

∞∑
k=1

(−1)k

2k − 1
e−π

2(2k−1)2t cos[(2k − 1)πx].

This function indeed tends to 1/2 as t tends to infinity.

Problem 5 Find the solution of the following initial boundary value problem:

∂u

∂t
=
∂2u

∂x2
, x ∈ (0, 1) , t > 0,

∂u

∂x
(0, t) = cos(πt) , u(1, t) = 0 , t > 0; u(x, 0) = 0.

SOLUTION:
We find a function U(x, t) = ax+ b such that

∂U

∂x
(0, t) = a = cosπt, U(1, t) = a+ b = 0.

We find a = cosπt, b = − cosπt. Substituting u(x, t) = (x− 1) cosπt+ v(x, t) in the heat equation,
we obtain

∂v

∂t
− ∂2v

∂x2
= (x− 1)π sinπt,

∂v

∂x
(0, t) = 0, v(1, t) = 0, v(x, 0) = 1− x.

The corresponding eigenvalues and eigenfunctions solve the problem X ′′+ λX = 0, with boundary
conditions X ′(0) = 0, X(1) = 0. The general solution X = c1 cos(

√
λx) + c2 sin(

√
λx) produces

c2 = 0 and then cos
√
λ = 0. Therefore,

√
λ =

(
n− 1

2

)
π =⇒ λn =

(2n− 1)2π2

4
, n = 1, 2, . . . ,

and the corresponding eigenfunctions are

Xn(x) = cos
(2n− 1)πx

2
.

We now substitute v(x, t) =
∑∞

n=1An(t) cos (2n−1)πx
2 in the non-homogeneous heat equation, thereby

obtaining:

A′n + λnAn = 2π sinπt

∫ 1

0
(x− 1) cos

(2n− 1)πx

2
dx = − 8

(2n− 1)2π
sinπt,



with initial condition:

An(0) = 2

∫ 1

0
(1− x) cos

(2n− 1)πx

2
dx =

4(1− x)

(2n− 1)π
sin

(2n− 1)πx

2

∣∣∣∣1
x=0

+
4

(2n− 1)π

∫ 1

0
sin

(2n− 1)πx

2
dx =

8

(2n− 1)2π2
.

To find a particular solution, we insert: An = an cosπt + bn sinπt in the equation for An thereby
getting

(λn + πbn) cosπt+ (λn − πan) sinπt = − 8

(2n− 1)2π
sinπt =⇒

λn + πbn = 0, λn − πan = − 8

(2n− 1)2π
=⇒ an =

λn
π

+
8

(2n− 1)2π
, bn = −λn

π
.

Adding a solution of the homogeneous ODE, we find

An(t) =

(
(2n− 1)2π

4
+

8

(2n− 1)2π

)
(cosπt− e−(2n−1)2π2t/4)− (2n− 1)2π

4
sinπt+

8e−(2n−1)
2π2t/4

(2n− 1)2π2
.

Then

u(x, t) = (x− 1) cosπt+
∞∑
n=1

[(
(2n− 1)2π

4
+

8

(2n− 1)2π

)
(cosπt− e−(2n−1)2π2t/4)

− (2n− 1)2π

4
sinπt+

8e−(2n−1)
2π2t/4

(2n− 1)2π2

]
cos

(2n− 1)πx

2
.

Problem 6 Solve the following initial boundary value problem:

∂u

∂t
=
∂2u

∂x2
− 2, x ∈ (0, 1) , t > 0,

∂u

∂x
(0, t) = 0 , u(1, t) = 0 , t > 0,

u(x, 0) = 0.

SOLUTION:
A particular solution of the boundary value problem

U ′′ = 2, U ′(0) = 0, U(1) = 0,

is U(x) = x2 − 1. Then v(x, t) = u(x, t) − U(x) satisfies the homogeneous heat equation with
homogeneous boundary conditions and different initial condition: v(x, 0) = 1 − x2. We find the
following eigenvalue problem for X(x) after separating variables by u(x, t) = X(x)T (t):

X ′′ + λX = 0, X ′(0) = 0, X(1) = 0.

The general solution of the ODE, X = c1 cos(
√
λx) + c2 sin(

√
λx), produces X ′(0) =

√
λc2 = 0,

and X(1) = c1 sin
√
λ = 0. Then

√
λ = nπ, n = 1, 2, . . . . The function T (t) satisfies T ′ + λT = 0.

Its solution is T = e−λt = e−n
2π2t. Using now the superposition principle, we obtain

v(x, t) =
∞∑
n=1

Ane
−n2π2t sin(nπx) =⇒ v(x, 0) = 1− x2 =

∞∑
n=1

An sin(nπx).



Then

An = 2

∫ 1

0
(1− x2) sin(nπx)dx = −2(1− x2)

nπ
cos(nπx)

∣∣∣∣1
0

− 4

nπ

∫ 1

0
x cos(nπx)dx

=
2

nπ
− 4x

n2π2
sin(nπx)

∣∣∣∣1
0

+
4

n2π2

∫ 1

0
sin(nπx)dx =

2

nπ
+

4

n3π3
[1− cos(nπ)].

We therefore find

u(x, t) = (x2 − 1) +
2

π

∞∑
n=1

(
1 +

2[1− (−1)n]

n2π2

)
e−n

2π2t

n
sin(nπx).


