uc3m \mid Universidad Carlos III de Madrid

APPLIED DIFFERENTIAL CALCULUS

LECTURE 6: Fourier series and separation of variables: Wave equation.

PROBLEMS

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Consider the following model of wave equation.

$$
\begin{aligned}
\text { Partial Diff. Equation } & : \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial^{2} u}{\partial t^{2}}(x, t), \quad t>0, \quad 0<x<\pi \\
\text { Boundary Conditions } & : u(0, t)=0, u(\pi, t)=0, \quad t \geq 0 ; \\
\text { Initial Conditions } & :(i) u(x, 0)=5 \sin (2 x)-2 \sin (5 x), \quad \text { (ii) } \frac{\partial u}{\partial t}(x, 0)=0, \quad 0 \leq x \leq \pi .
\end{aligned}
$$

Using separation of variables plus condition (ii), the formal solution can be written as

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \cos (n t) \sin (n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

Find the value $u(\pi / 4, \pi / 4)$.
Note. It can be useful $\int_{0}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) \mathrm{d} x=\left\{\begin{array}{l}0, m \neq n \\ L / 2, m=n\end{array} \quad(L>0 ; m, n \in \mathbb{N})\right.$

Problem 2 Consider the following model of wave equation.

$$
\begin{aligned}
\text { Partial Diff. Equation } & : \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial^{2} u}{\partial t^{2}}(x, t), \quad t>0, \quad 0<x<\pi \\
\text { Boundary Conditions } & : u(0, t)=0, u(\pi, t)=0, \quad t \geq 0 \\
\text { Initial Conditions } & :(\mathbf{i}) u(x, 0)=\sum_{k=1}^{4} k^{2} \sin (k x), \quad \text { (ii) } \frac{\partial u}{\partial t}(x, 0)=0, \quad 0 \leq x \leq \pi .
\end{aligned}
$$

Using separation of variables and condition (ii), the formal solution can be written as

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \cos (n t) \sin (n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

Find the coefficients $A_{n}, \forall n \geq 1$, and express $u(x, t)$ by means of a finite sum.

Problem 3 Find the values of ω for which the following initial boundary value problem for the wave equation has resonances:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& u(0, t)=\cos (\omega t), \quad \frac{\partial u}{\partial x}(1, t)=0, t>0 \\
& u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=0, x \in[0,1]
\end{aligned}
$$

Problem 4 Solve the following initial boundary value problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}-x, x \in(0,1), t>0, \\
& u(0, t)=0, \quad \frac{\partial u}{\partial x}(1, t)=0, t>0, \\
& u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=\left\{\begin{array}{ll}
1, & x<1 / 2, \\
0, & x \geq 1 / 2 .
\end{array}, x \in[0,1] .\right.
\end{aligned}
$$

