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Problem 1 Consider the following model of wave equation.

Partial Diff. Equation :
∂2u

∂x2
(x, t) =

∂2u

∂t2
(x, t) , t > 0 , 0 < x < π ;

Boundary Conditions : u(0, t) = 0 , u(π, t) = 0 , t ≥ 0 ;

Initial Conditions : (i) u(x, 0) = 5 sin(2x)− 2 sin(5x) , (ii)
∂u

∂t
(x, 0) = 0 , 0 ≤ x ≤ π .

Using separation of variables plus condition (ii), the formal solution can be written as

u(x, t) =

∞∑
n=1

An cos(nt) sin (nx) , with An ∈ R .

Find the value u(π/4, π/4) .

Note. It can be useful

∫ L

0
sin
(mπ
L
x
)

sin
(nπ
L
x
)

dx =

{
0 , m 6= n

L/2 , m = n
(L > 0 ; m,n ∈ N)

SOLUTION:
Taking t = 0 in the formal solution we get

u(x, 0) =

∞∑
n=1

An sin (nx) , with An ∈ R .

On the other hand, observing that the initial condition (i) u(x, 0) = 5 sin(2x)−2 sin(5x) is a linear
combination of functions of the form sin(nx) , with n = 1, 2, 3, . . . , we can obtain An by simply
equating coefficients of similar terms, namely

∞∑
n=1

An sin (nx) = 5 sin(2x)− 2 sin(5x)



implies
A1 = 0 , A2 = 5 , A3 = 0 , A4 = 0 , A5 = −2 ; An = 0 ∀ n > 5 .

An alternative way to calculate An consists in fixing m ∈ N and using the identity suggested in the
note of the text in what follows

5

∫ π

0
sin(2x) sin(mx) dx− 2

∫ π

0
sin(5x) sin(mx) dx =

∞∑
n=1

An

∫ π

0
sin (nx) sin(mx) dx .

Finally, the formal solution of the wave equation can be written as

u(x, t) = 5 cos(2t) sin(2x)− 2 cos(5t) sin(5x) ,

which yields

u(π/4, π/4) = 5 cos(π/2) sin(π/2)− 2 cos(5π/4) sin(5π/4) = −1 .

Problem 2 Consider the following model of wave equation.

Partial Diff. Equation :
∂2u

∂x2
(x, t) =

∂2u

∂t2
(x, t) , t > 0 , 0 < x < π ;

Boundary Conditions : u(0, t) = 0 , u(π, t) = 0 , t ≥ 0 ;

Initial Conditions : (i) u(x, 0) =
4∑

k=1

k2 sin(kx) , (ii)
∂u

∂t
(x, 0) = 0 , 0 ≤ x ≤ π .

Using separation of variables and condition (ii), the formal solution can be written as

u(x, t) =

∞∑
n=1

An cos(nt) sin (nx) , with An ∈ R .

Find the coefficients An , ∀ n ≥ 1 , and express u(x, t) by means of a finite sum.

SOLUTION:
Taking t = 0 in the formal solution we get

u(x, 0) =

∞∑
n=1

An sin (nx) , with An ∈ R .

On the other hand, observing that the initial condition (i) u(x, 0) =
∑4

k=1 k
2 sin(kx) is a linear

combination of functions of the form sin(nx) , with n = 1, 2, . . . , we can obtain An by simply
equating coefficients of similar terms, namely

∞∑
n=1

An sin (nx) =

4∑
k=1

k2 sin(kx) = sin(x) + 4 sin(2x) + 9 sin(3x) + 16 sin(4x)

implies
A1 = 1 , A2 = 4 , A3 = 9 , A4 = 16 ; An = 0 ∀ n ≥ 5 .



Finally, the solution of the wave equation can be written as the following finite sum

u(x, t) =
4∑

n=1

An cos(nt) sin(nx) = cos(t) sin(x) + 4 cos(2t) sin(2x) + 9 cos(3t) sin(3x) + 16 cos(4t) sin(4x) .

Problem 3 Find the values of ω for which the following initial boundary value problem for the
wave equation has resonances:

∂2u

∂t2
=
∂2u

∂x2
, x ∈ (0, 1) , t > 0,

u(0, t) = cos(ωt) ,
∂u

∂x
(1, t) = 0 , t > 0,

u(x, 0) = 0 ,
∂u

∂t
(x, 0) = 0 , x ∈ [0, 1] .

SOLUTION:
The wave equation with homogeneous boundary conditions produces the following eigenvalue prob-
lem for X(x) after separating variables by u(x, t) = X(x)T (t):

X ′′ + λX = 0, X(0) = 0, X ′(1) = 0.

The general solution of the ODE, X = c1 cos(
√
λx) + c2 sin(

√
λx), produces X(0) = c1 = 0, and

X ′(1) = c2
√
λ cos

√
λ = 0. Then

√
λ = (2n − 1)π/2, n = 1, 2, . . . . The function T (t) satisfies

T ′′ + λT = 0. Its solutions are sines and cosines of
√
λt = (2n − 1)πt/2. Then the natural

frequencies of the string are
√
λ = (2n− 1)π/2 and the resonant frequencies are

ω =
√
λ =

(
n− 1

2

)
π, n = 1, 2, . . . .

Problem 4 Solve the following initial boundary value problem:

∂2u

∂t2
=
∂2u

∂x2
− x, x ∈ (0, 1) , t > 0,

u(0, t) = 0 ,
∂u

∂x
(1, t) = 0 , t > 0,

u(x, 0) = 0 ,
∂u

∂t
(x, 0) =

{
1, x < 1/2,

0, x ≥ 1/2.
, x ∈ [0, 1] .

SOLUTION:
A particular solution of the boundary value problem

U ′′ = x, U(0) = 0, U ′(1) = 0,

is U(x) = x3

6 −
x
2 . Then v(x, t) = u(x, t) − U(x) satisfies the homogeneous wave equation with

homogeneous boundary conditions and different initial conditions:

v(x, 0) =
x

2
− x3

6
,

∂v

∂t
(x, 0) =

{
1, x < 1/2,

0, x ≥ 1/2.
, x ∈ [0, 1] .



The homogeneous wave equation with homogeneous boundary conditions yields the following eigen-
value problem for X(x) after separating variables by u(x, t) = X(x)T (t):

X ′′ + λX = 0, X(0) = 0, X ′(1) = 0.

The general solution of the ODE, X = c1 cos(
√
λx) + c2 sin(

√
λx), produces X(0) = c1 = 0, and

X ′(1) = c2
√
λ cos

√
λ = 0. Then

√
λ = (2n − 1)π/2, and Xn(x) = sin[(2n − 1)πx/2], n = 1, 2, . . ..

The function Tn(t) satisfies T ′′
n + λnTn = 0. Its solutions are

Tn(t) = an cos
(2n− 1)πt

2
+ bn sin

(2n− 1)πt

2
.

The initial conditions produce

an = Tn(0) = 2

∫ 1

0

(
x

2
− x3

6

)
sin

(2n− 1)πx

2
dx =

32(−1)n+1

(2n− 1)4π4
,

bn =
2T ′

n(0)

(2n− 1)π
=

4

(2n− 1)π

∫ 1/2

0
sin

(2n− 1)πx

2
dx =

8

(2n− 1)2π2

(
1− cos

(2n− 1)π

4

)
.

The solution is therefore

u(x, t) =
x3

6
− x

2
+

8

(2n− 1)2π2

∞∑
n=1

[
4(−1)n+1

(2n− 1)2π2
cos

(2n− 1)πt

2

+

(
1− cos

(2n− 1)π

4

)
sin

(2n− 1)πt

2

]
sin

(2n− 1)πx

2
.


