uc3m | Universidad Carlos III de Madrid

APPLIED DIFFERENTIAL CALCULUS
LECTURE 6: Fourier series and separation of variables: Wave equation. PROBLEMS

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Consider the following model of wave equation.

$$
\begin{aligned}
\text { Partial Diff. Equation } & : \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial^{2} u}{\partial t^{2}}(x, t), \quad t>0, \quad 0<x<\pi \\
\text { Boundary Conditions } & : u(0, t)=0, u(\pi, t)=0, \quad t \geq 0 ; \\
\text { Initial Conditions } & :(\mathbf{i}) u(x, 0)=5 \sin (2 x)-2 \sin (5 x), \quad \text { (ii) } \frac{\partial u}{\partial t}(x, 0)=0, \quad 0 \leq x \leq \pi .
\end{aligned}
$$

Using separation of variables plus condition (ii), the formal solution can be written as

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \cos (n t) \sin (n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

Find the value $u(\pi / 4, \pi / 4)$.
Note. It can be useful $\int_{0}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) \mathrm{d} x=\left\{\begin{array}{l}0, m \neq n \\ L / 2, m=n\end{array} \quad(L>0 ; m, n \in \mathbb{N})\right.$

SOLUTION:

Taking $t=0$ in the formal solution we get

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

On the other hand, observing that the initial condition (i) $u(x, 0)=5 \sin (2 x)-2 \sin (5 x)$ is a linear combination of functions of the form $\sin (n x)$, with $n=1,2,3, \ldots$, we can obtain A_{n} by simply equating coefficients of similar terms, namely

$$
\sum_{n=1}^{\infty} A_{n} \sin (n x)=5 \sin (2 x)-2 \sin (5 x)
$$

implies

$$
A_{1}=0, A_{2}=5, A_{3}=0, A_{4}=0, A_{5}=-2 ; A_{n}=0 \forall n>5 .
$$

An alternative way to calculate A_{n} consists in fixing $m \in \mathbb{N}$ and using the identity suggested in the note of the text in what follows

$$
5 \int_{0}^{\pi} \sin (2 x) \sin (m x) \mathrm{d} x-2 \int_{0}^{\pi} \sin (5 x) \sin (m x) \mathrm{d} x=\sum_{n=1}^{\infty} A_{n} \int_{0}^{\pi} \sin (n x) \sin (m x) \mathrm{d} x .
$$

Finally, the formal solution of the wave equation can be written as

$$
u(x, t)=5 \cos (2 t) \sin (2 x)-2 \cos (5 t) \sin (5 x),
$$

which yields

$$
u(\pi / 4, \pi / 4)=5 \cos (\pi / 2) \sin (\pi / 2)-2 \cos (5 \pi / 4) \sin (5 \pi / 4)=-1 \text {. }
$$

Problem 2 Consider the following model of wave equation.

$$
\begin{aligned}
\text { Partial Diff. Equation } & : \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial^{2} u}{\partial t^{2}}(x, t), \quad t>0, \quad 0<x<\pi \\
\text { Boundary Conditions } & : u(0, t)=0, u(\pi, t)=0, \quad t \geq 0 \\
\text { Initial Conditions } & :(\mathbf{i}) u(x, 0)=\sum_{k=1}^{4} k^{2} \sin (k x), \quad \text { (ii) } \frac{\partial u}{\partial t}(x, 0)=0, \quad 0 \leq x \leq \pi .
\end{aligned}
$$

Using separation of variables and condition (ii), the formal solution can be written as

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \cos (n t) \sin (n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

Find the coefficients $A_{n}, \forall n \geq 1$, and express $u(x, t)$ by means of a finite sum.

SOLUTION:

Taking $t=0$ in the formal solution we get

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

On the other hand, observing that the initial condition (i) $u(x, 0)=\sum_{k=1}^{4} k^{2} \sin (k x)$ is a linear combination of functions of the form $\sin (n x)$, with $n=1,2, \ldots$, we can obtain A_{n} by simply equating coefficients of similar terms, namely

$$
\sum_{n=1}^{\infty} A_{n} \sin (n x)=\sum_{k=1}^{4} k^{2} \sin (k x)=\sin (x)+4 \sin (2 x)+9 \sin (3 x)+16 \sin (4 x)
$$

implies

$$
A_{1}=1, A_{2}=4, A_{3}=9, A_{4}=16 ; A_{n}=0 \forall n \geq 5 .
$$

Finally, the solution of the wave equation can be written as the following finite sum

$$
u(x, t)=\sum_{n=1}^{4} A_{n} \cos (n t) \sin (n x)=\cos (t) \sin (x)+4 \cos (2 t) \sin (2 x)+9 \cos (3 t) \sin (3 x)+16 \cos (4 t) \sin (4 x) .
$$

Problem 3 Find the values of ω for which the following initial boundary value problem for the wave equation has resonances:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, x \in(0,1), t>0 \\
& u(0, t)=\cos (\omega t), \frac{\partial u}{\partial x}(1, t)=0, t>0 \\
& u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=0, x \in[0,1]
\end{aligned}
$$

SOLUTION:

The wave equation with homogeneous boundary conditions produces the following eigenvalue problem for $X(x)$ after separating variables by $u(x, t)=X(x) T(t)$:

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, \quad X^{\prime}(1)=0 .
$$

The general solution of the ODE, $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$, produces $X(0)=c_{1}=0$, and $X^{\prime}(1)=c_{2} \sqrt{\lambda} \cos \sqrt{\lambda}=0$. Then $\sqrt{\lambda}=(2 n-1) \pi / 2, n=1,2, \ldots$ The function $T(t)$ satisfies $T^{\prime \prime}+\lambda T=0$. Its solutions are sines and cosines of $\sqrt{\lambda} t=(2 n-1) \pi t / 2$. Then the natural frequencies of the string are $\sqrt{\lambda}=(2 n-1) \pi / 2$ and the resonant frequencies are

$$
\omega=\sqrt{\lambda}=\left(n-\frac{1}{2}\right) \pi, \quad n=1,2, \ldots
$$

Problem 4 Solve the following initial boundary value problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}-x, x \in(0,1), t>0 \\
& u(0, t)=0, \frac{\partial u}{\partial x}(1, t)=0, t>0 \\
& u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=\left\{\begin{array}{ll}
1, & x<1 / 2, \\
0, & x \geq 1 / 2 .
\end{array}, x \in[0,1] .\right.
\end{aligned}
$$

SOLUTION:

A particular solution of the boundary value problem

$$
U^{\prime \prime}=x, \quad U(0)=0, \quad U^{\prime}(1)=0,
$$

is $U(x)=\frac{x^{3}}{6}-\frac{x}{2}$. Then $v(x, t)=u(x, t)-U(x)$ satisfies the homogeneous wave equation with homogeneous boundary conditions and different initial conditions:

$$
v(x, 0)=\frac{x}{2}-\frac{x^{3}}{6}, \quad \frac{\partial v}{\partial t}(x, 0)=\left\{\begin{array}{l}
1, x<1 / 2, \\
0, x \geq 1 / 2 .
\end{array}, x \in[0,1] .\right.
$$

The homogeneous wave equation with homogeneous boundary conditions yields the following eigenvalue problem for $X(x)$ after separating variables by $u(x, t)=X(x) T(t)$:

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, \quad X^{\prime}(1)=0 .
$$

The general solution of the ODE, $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$, produces $X(0)=c_{1}=0$, and $X^{\prime}(1)=c_{2} \sqrt{\lambda} \cos \sqrt{\lambda}=0$. Then $\sqrt{\lambda}=(2 n-1) \pi / 2$, and $X_{n}(x)=\sin [(2 n-1) \pi x / 2], n=1,2, \ldots$. The function $T_{n}(t)$ satisfies $T_{n}^{\prime \prime}+\lambda_{n} T_{n}=0$. Its solutions are

$$
T_{n}(t)=a_{n} \cos \frac{(2 n-1) \pi t}{2}+b_{n} \sin \frac{(2 n-1) \pi t}{2} .
$$

The initial conditions produce

$$
\begin{array}{r}
a_{n}=T_{n}(0)=2 \int_{0}^{1}\left(\frac{x}{2}-\frac{x^{3}}{6}\right) \sin \frac{(2 n-1) \pi x}{2} d x=\frac{32(-1)^{n+1}}{(2 n-1)^{4} \pi^{4}}, \\
b_{n}=\frac{2 T_{n}^{\prime}(0)}{(2 n-1) \pi}=\frac{4}{(2 n-1) \pi} \int_{0}^{1 / 2} \sin \frac{(2 n-1) \pi x}{2} d x=\frac{8}{(2 n-1)^{2} \pi^{2}}\left(1-\cos \frac{(2 n-1) \pi}{4}\right) .
\end{array}
$$

The solution is therefore

$$
\begin{aligned}
u(x, t) & =\frac{x^{3}}{6}-\frac{x}{2}+\frac{8}{(2 n-1)^{2} \pi^{2}} \sum_{n=1}^{\infty}\left[\frac{4(-1)^{n+1}}{(2 n-1)^{2} \pi^{2}} \cos \frac{(2 n-1) \pi t}{2}\right. \\
& \left.+\left(1-\cos \frac{(2 n-1) \pi}{4}\right) \sin \frac{(2 n-1) \pi t}{2}\right] \sin \frac{(2 n-1) \pi x}{2} .
\end{aligned}
$$

