uc3m | Universidad Carlos III de Madrid

APPLIED DIFFERENTIAL CALCULUS

LECTURE 7: Fourier series and separation of variables: Laplace equation.

PROBLEMS

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1

Find the solution of the following boundary value problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, x \in(0,1), \quad y \in(0,1) \\
& u(0, y)=0, u(1, y)=0, y \in[0,1] \\
& \frac{\partial u}{\partial y}(x, 0)=1, u(x, 1)=0, x \in[0,1]
\end{aligned}
$$

SOLUTION:

Separation of variables, $u=X(x) Y(y)$ yields $\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda$. The homogeneous boundary conditions produce $X(0)=0, X(1)=0, Y(1)=0$ and the only inhomogeneous boundary condition occurs at $y=0$. Thus we assume that $\lambda>0$ and solve the eigenvalue problem: $X^{\prime \prime}+\lambda X=0$, $X(0)=0, X(1)=0$. The solution is $\lambda_{n}=n^{2} \pi^{2}, X_{n}(x)=\sin (n \pi x), n=1,2, \ldots$ Why? The general solution of the ODE is $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x) . X(0)=c_{1}=0$ and $X(1)=c_{2} \sin (\sqrt{\lambda})=0$, which yields $\sqrt{\lambda}=n \pi, n=1,2, \ldots$. Solving now the problem $Y^{\prime \prime}-\lambda Y=0$ with $Y(1)=0$, we obtain $X_{n}(x)=\sinh \left[\sqrt{\lambda_{n}}(y-1)\right]=\sinh [n \pi(y-1)]$. By superposition:

$$
\begin{gathered}
u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \sinh [n \pi(y-1)], \\
1=\sum_{n=1}^{\infty} a_{n} n \pi \sin (n \pi x) \cosh (-n \pi)=\sum_{n=1}^{\infty} a_{n} n \pi \cosh (n \pi) \sin (n \pi x) .
\end{gathered}
$$

Then

$$
n \pi \cosh (n \pi) a_{n}=2 \int_{0}^{1} \sin (n \pi x) d x=-\left.\frac{2}{n \pi} \cos (n \pi x)\right|_{0} ^{1}=2 \frac{1-\cos n \pi}{n \pi} .
$$

Thus a_{n} is

$$
a_{n}=\left\{\begin{array}{cc}
\frac{4}{n^{2} \pi^{2} \cosh (n \pi)}, & \text { odd } n, \\
0, & \text { even } n
\end{array}\right.
$$

and the solution of the BVP is

$$
u(x, t)=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin [(2 n-1) \pi x] \sinh [(2 n-1) \pi(y-1)]}{(2 n-1)^{2} \cosh [(2 n-1) \pi]}
$$

Problem 2 Find the solution of the following boundary value problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, x \in(0,1), y \in(0,1) \\
& u(0, y)=0, u(1, y)=\sin \frac{\pi y}{2}, y \in[0,1] \\
& \frac{\partial u}{\partial y}(x, 0)=0, \frac{\partial u}{\partial y}(x, 1)=0, x \in[0,1]
\end{aligned}
$$

SOLUTION:

Separation of variables, $u=X(x) Y(y)$ yields $\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=\lambda$. The homogeneous boundary conditions produce $X(0)=0, Y^{\prime}(0)=0, Y^{\prime}(1)=0$ and the only inhomogeneous boundary condition occurs at $x=1$. Thus we assume that $\lambda>0$ and solve the eigenvalue problem: $Y^{\prime \prime}+\lambda Y=0$, $Y^{\prime}(0)=0, Y^{\prime}(1)=0$. The solution is $\lambda_{n}=n^{2} \pi^{2}, Y_{n}(y)=\cos (n \pi y), n=0,1,2, \ldots$ Why? The general solution of the ODE is $Y=c_{1} \cos (\sqrt{\lambda} y)+c_{2} \sin (\sqrt{\lambda} y) . \quad Y^{\prime}(0)=\sqrt{\lambda} c_{2}=0$ and $Y^{\prime}(1)=\sqrt{\lambda} c_{1} \sin (\sqrt{\lambda})=0$, which yields $c_{2}=0, \sqrt{\lambda}=n \pi, n=0,1,2, \ldots$ Solving now the problem $X^{\prime \prime}-\lambda X=0$ with $X(0)=0$, we obtain $X_{n}(x)=\sinh \left[\sqrt{\lambda_{n}} x\right]=\sinh (n \pi x)$. For $n=0, X_{0}=a_{0} x$. By superposition:

$$
\begin{gathered}
u(x, y)=a_{0} x+\sum_{n=1}^{\infty} a_{n} \sinh (n \pi x) \cos (n \pi y) \\
\sin \frac{\pi y}{2}=a_{0}+\sum_{n=1}^{\infty} a_{n} \sinh (n \pi) \cos (n \pi y)
\end{gathered}
$$

Then

$$
\begin{aligned}
a_{0} & =\int_{0}^{1} \sin \frac{\pi y}{2} d y=\frac{2}{\pi} \\
a_{n} & =2 \int_{0}^{1} \sin \frac{\pi y}{2} \cos (n \pi y) d y=\int_{0}^{1}\left(\sin \frac{(2 n+1) \pi y}{2}-\sin \frac{(2 n-1) \pi y}{2}\right) d y \\
& =\frac{2}{(2 n+1) \pi}-\frac{2}{(2 n-1) \pi}=-\frac{4}{\left(4 n^{2}-1\right) \pi}
\end{aligned}
$$

Thus the solution of the BVP is

$$
u(x, y)=\frac{2 x}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1} \sinh (n \pi x) \cos (n \pi y)
$$

Problem 3 Find the solution of the following boundary value problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, x \in(0,1), \quad y \in(0,1) \\
& u(0, y)=0, u(1, y)=0, y \in[0,1] \\
& \frac{\partial u}{\partial y}(x, 0)=e^{2 x}, u(x, 1)=0, x \in[0,1]
\end{aligned}
$$

SOLUTION:

Separation of variables, $u=X(x) Y(y)$ yields $\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda$. The homogeneous boundary conditions produce $X(0)=0, X(1)=0, Y(1)=0$ and the only non-homogeneous boundary condition occurs at $y=0$. Thus we assume that $\lambda>0$ and solve the eigenvalue problem: $X^{\prime \prime}+$ $\lambda X=0, X(0)=0, X(1)=0$. The solution is $\lambda_{n}=n^{2} \pi^{2}, X_{n}(x)=\sin (n \pi x), n=1,2, \ldots$ Why? The general solution of the ODE is $X=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x) . X(0)=c_{1}=0$ and $X(1)=c_{2} \sin (\sqrt{\lambda})=0$, which yields $\sqrt{\lambda}=n \pi, n=1,2, \ldots$. Solving now the problem $Y^{\prime \prime}-\lambda Y=0$ with $Y(1)=0$, we obtain $X_{n}(x)=\sinh \left[\sqrt{\lambda_{n}}(y-1)\right]=\sinh [n \pi(y-1)]$. By superposition:

$$
\begin{gathered}
u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \sinh [n \pi(y-1)] \\
e^{2 x}=\sum_{n=1}^{\infty} a_{n} n \pi \sin (n \pi x) \cosh (-n \pi)=\sum_{n=1}^{\infty} a_{n} n \pi \cosh (n \pi) \sin (n \pi x)
\end{gathered}
$$

Then

$$
\begin{aligned}
n \pi \cosh (n \pi) a_{n}=2 \int_{0}^{1} e^{2 x} \sin (n \pi x) d x=2 \operatorname{Im} \int_{0}^{1} e^{2 x+i n \pi x} d x & =\operatorname{Im} \frac{2}{2+i n \pi}\left(e^{2+i n \pi}-1\right) \\
= & \operatorname{Im} \frac{2}{2+i n \pi}\left[e^{2}(-1)^{n}-1\right]=-\frac{2 n \pi}{4+n^{2} \pi^{2}}\left[(-1)^{n} e^{2}-1\right]
\end{aligned}
$$

Thus a_{n} is

$$
a_{n}=\frac{2\left[1-(-1)^{n} e^{2}\right]}{\left(4+n^{2} \pi^{2}\right) \cosh (n \pi)}
$$

and the solution of the BVP is

$$
u(x, t)=2 \sum_{n=1}^{\infty} \frac{1-(-1)^{n} e^{2}}{\left(4+n^{2} \pi^{2}\right) \cosh (n \pi)} \sin (n \pi x) \sinh [n \pi(y-1)]
$$

