Applied Differential Calculus

Self-assessment: Test 2

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 A particular solution of $y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \ln t$, for $t>0$, is given by

$$
y_{p}(t)=\frac{1}{2} t^{2} e^{-t} \ln t-\frac{3}{4} t^{2} e^{-t} .
$$

Using this information, calculate the general solution of the following second-order differential equation

$$
y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \ln t+(1-t) e^{-t} .
$$

Problem 2 Solve the following second-order differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\sin \left(e^{x}\right)
$$

and verify the obtained result.

Problem 3 Consider the following differential equation

$$
(x-1) y^{\prime \prime}+y^{\prime}=0
$$

and assume that the solution is given by the power series $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
(a) Find the recurrence relation satisfied by the coefficients a_{n}.
(b) Apply the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$, then write the first three non-zero terms of the used power series.

Problem 4 Solve the initial value problem : $x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+1) y=0$, with $y(1)=0$, $y^{\prime}(1)=e$ knowing that, obviously, $y=e^{x}$ is a solution of the homogeneous ODE.

