

Applied Differential Calculus

Self-assessment: Test 2

Authors: Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 A particular solution of $y'' + 2y' + y = e^{-t} \ln t$, for t > 0, is given by

$$y_p(t) = \frac{1}{2} t^2 e^{-t} \ln t - \frac{3}{4} t^2 e^{-t}.$$

Using this information, calculate the general solution of the following second-order differential equation

 $y'' + 2y' + y = e^{-t} \ln t + (1-t) e^{-t}.$

Problem 2 Solve the following second-order differential equation

$$y'' + 3y' + 2y = \sin(e^x)$$

and verify the obtained result.

Problem 3 Consider the following differential equation

$$(x-1)y'' + y' = 0$$

and assume that the solution is given by the power series $y(x) = \sum_{n=0}^{\infty} a_n x^n$.

- (a) Find the recurrence relation satisfied by the coefficients a_n .
- (b) Apply the initial conditions y(0) = 0 and y'(0) = 1, then write the first three non-zero terms of the used power series.

Problem 4 Solve the initial value problem : xy'' - (2x + 1)y' + (x + 1)y = 0, with y(1) = 0, y'(1) = e knowing that, obviously, $y = e^x$ is a solution of the homogeneous ODE.