uc3m \mid Universidad Carlos III d (C) (1) (b)
 BY NC SA

Applied Differential Calculus

Self-assessment: Test 3

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Solve the following system of first-order differential equations

$$
\begin{cases}x_{1}^{\prime}=-4 x_{1}+2 x_{2}, & x_{1}(0)=2 \\ x_{2}^{\prime}=-\frac{5}{2} x_{1}+2 x_{2}, & x_{2}(0)=-3 .\end{cases}
$$

Problem 2 (i) Prove that the differential equation $y^{\prime \prime}-6 y^{\prime}+13 y=0$ is equivalent to the following system of first-order differential equations

$$
X^{\prime}=\left[\begin{array}{rr}
0 & 1 \\
-13 & 6
\end{array}\right] X, \quad \text { where } \quad X=X(t)=\binom{x_{1}(t)}{x_{2}(t)} .
$$

(ii) Solve the system in (i) knowing that

$$
X(0)=\binom{2}{2} .
$$

Problem 3 Given the ODE: $y^{\prime \prime}+2 y^{\prime}-3 y=0$, write it as a system of two first order ODEs, classify the equilibrium point $(0,0)$ and draw its phase portrait, indicating explicitly any real eigendirections that may be relevant.

Problem 4 Solve the following system of first order linear ODEs with initial condition $x_{1}(0)=1$, $x_{2}(0)=1$:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1}-3 x_{2} \\
x_{2}^{\prime}=6 x_{1}-4 x_{2}
\end{array}\right.
$$

