uc3m Universidad Carlos III de Madrid

Cálculo Diferencial Aplicado

FINAL EXAM 1

Autores:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 (2.0 mark) Consider the following ordinary differential equation (ODE)

$$
y^{\prime \prime}+y=x e^{x}+2 e^{-x}
$$

i) Find the general solution of the ODE.
ii) Find the solution satisfying the initial conditions $y(0)=1, y^{\prime}(0)=1$.

Problem 2 (2.0 mark) Consider the following system of first-order differential equations

$$
\vec{X}^{\prime}(t)=\left(\begin{array}{ll}
2 & -2 \\
8 & -6
\end{array}\right) \vec{X}(t)
$$

for $t>0$.
i) Find the general solution of the system and verify the results.
ii) Analyze the behavior of the solution calculated in (i) as $t \rightarrow+\infty$. Can this behavior depend on the initial condition possibly assigned to the system?

Problem 3 (2.0 mark) Let $g(x)=-1-x / 2$. Then, solve the following initial value problem

$$
\left\{\begin{aligned}
-\frac{2 y+x}{y+x} y^{\prime} & =\frac{2 y}{x^{2}}(1+g), \quad x \geq 1, \\
y(1) & =1 .
\end{aligned}\right.
$$

Problem 4 (2.0 mark) Consider the following heat equation

$$
\begin{aligned}
\text { Partial Differential Equation (PDE) } & : & \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial u}{\partial t}(x, t), t>0, x \in(0, \pi) \\
\text { Boundary Conditions (BCs) } & : & u(0, t)=0, u(\pi, t)=0, t>0 \\
\text { Initial Condition (IC) } & : & u(x, 0)=f(x), x \in[0, \pi] .
\end{aligned}
$$

Apply a separation of variables as $u(x, t)=X(x) T(t) \not \equiv 0$.
i) Prove that $T(t)=c e^{-\lambda t}$, where $c \in \mathbb{R} \backslash\{0\}$ and λ is the separation constant.
ii) Prove that $X(x)$ satisfies the following boundary value problem

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, X(\pi)=0
$$

and find the values of $\lambda>0$ providing nonzero solutions.
iii) Knowing that the solution $u(x, t)$ can be expressed as

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-n^{2} t} \sin (n x), \text { with } A_{n} \in \mathbb{R}
$$

find the coefficients $A_{n}(n \in \mathbb{N})$ supposing that $f(x)=\sin ^{3}(x)$.

Hint. The following results can be useful.

- Given $L>0$ and $m, n \in \mathbb{N}$, we have $\int_{0}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) \mathrm{d} x= \begin{cases}0, m \neq n \\ L / 2, & m=n\end{cases}$
- $\sin (3 x)=\sin (x)\left(3-4 \sin ^{2}(x)\right), \forall x \in \mathbb{R}$.

Problem 5 (2.0 mark) Consider the initial value problem

$$
\left\{\begin{aligned}
y^{\prime} & =1+\frac{y}{2} \\
y(0) & =0
\end{aligned}\right.
$$

to which the following numerical scheme (improved Euler) is applied

$$
Y_{n+1}=Y_{n}+\frac{h}{2}\left[f\left(t_{n}, Y_{n}\right)+f\left(t_{n+1}, Y_{n}+h f\left(t_{n}, Y_{n}\right)\right)\right]
$$

i) Calculate, by using steps $h_{1}=0.2$ and $h_{2}=0.1$, the quantities $Y_{t=0.4}^{h_{1}}$ and $Y_{t=0.4}^{h_{2}}$, which are approximated values of $y(0.4)$.
ii) Estimate the order of the numerical method by means of the results obtained in (i), noting that the exact solution of the problem is $y(t)=2\left(e^{t / 2}-1\right)$.

