uc3m Universidad Carlos III de
 BY NC SA

Cálculo Diferencial Aplicado

FINAL EXAM 2

Autores:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 (2.0 mark) Consider the differential equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\ln x, \quad x>0$.
(i) Apply a change of variable to transform it into an equation with constant coefficients.
(ii) Solve the obtained equation together with the conditions $y(1)=1 / 2, \quad y^{\prime}(1)=1$.

Problem 2 (2.0 mark) Consider the following system of first-order differential equations

$$
\binom{X_{1}^{\prime}(t)}{X_{2}^{\prime}(t)}=\left(\begin{array}{cc}
2 & -5 \\
\alpha & -2
\end{array}\right)\binom{X_{1}(t)}{X_{2}(t)}
$$

with $\alpha \in \mathbb{R}$ and $t>0$.
(i) Find the value of α for which the qualitative behavior of the solutions of the system changes (hint: calculate the eigenvalues of the coefficients matrix in terms of α). Justify your answer.
(ii) Find the solution of the system for $\alpha=1$ and $\left(X_{1}(0), X_{2}(0)\right)=(1,0)$. In addition, calculate the distance $d(t)$ between the position $(0,0)$ and the position of a particle that moves according to the computed solution (hint: use formula $\left.d(t)=\sqrt{X_{1}(t)^{2}+X_{2}(t)^{2}}\right)$.

Problem 3 (2.0 mark) Solve the following initial value problem

$$
\left\{\begin{array}{cll}
x^{2}+e^{y}+\left(x e^{y}+\cos y\right) y^{\prime} & = & 0 \\
y(0) & = & g(\pi / 2)
\end{array}\right.
$$

knowing that the function g verifies

$$
g^{\prime}(x)=\sin (x), \quad g(0)=-1
$$

Problem 4 (2.0 mark) Consider the following model for the heat equation.

$$
\begin{aligned}
\text { Partial Differential Equation (PDE) } & : \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial u}{\partial t}(x, t), t>0, x \in(0, \pi / 3) \\
\text { Boundary Conditions (BC) } & : \quad \frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(\pi / 3, t)=0, t>0 \\
\text { Initial Condition (IC) } & : \quad u(x, 0)=f(x), x \in[0, \pi / 3] .
\end{aligned}
$$

Apply the separation of variables $u(x, t)=X(x) T(t) \not \equiv 0$.
(i) Prove that $X(x)$ satisfies the following boundary value problem

$$
X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=0, \quad X^{\prime}(\pi / 3)=0,
$$

and find the values of the separation constant $\lambda \geq 0$ providing nonzero solutions.
(ii) Knowing that the solution $u(x, t)$ can be expressed as

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-9 n^{2} t} \cos (3 n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

find the approximate value of $u(\pi / 6,1 / 9)$ by considering the first three terms only of the previous series and taking $f(x)=2 x+1$.

Note. The following result may be useful.
Given $L>0$ and $m, n \in \mathbb{N} \cup\{0\}$, we have $\int_{0}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x=\left\{\begin{array}{l}0 ; m \neq n \\ L / 2 ; m=n \neq 0 \\ L ; m=n=0 .\end{array}\right.$

Problem 5 (2.0 mark) The following initial value problem

$$
\left\{\begin{aligned}
y^{\prime} & =t+\frac{y}{2}+1 \\
y(0) & =1
\end{aligned}\right.
$$

must be numerically solved by using the Adams-Bashforth scheme

$$
Y_{n+2}=Y_{n+1}+\frac{3}{2} h f\left(t_{n+1}, Y_{n+1}\right)-\frac{1}{2} h f\left(t_{n}, Y_{n}\right) .
$$

(i) Calculate the approximated solution $Y_{t=0.3}^{h_{1}}$ of $y(0.3)$ with step $h_{1}=0.1$, knowing that Y_{1} has to be computed by the explicit Euler method.
(ii) After noting that step $h_{2}=0.01$ yields the approximation $Y_{t=0.3}^{h_{2}}=1.5327258$, estimate the order of the numerical scheme by means of $Y_{t=0.3}^{h_{1}}, Y_{t=0.3}^{h_{2}}$, and the exact solution given by $y(t)=7 e^{t / 2}-2(t+3)$.

