uc3m | Universidad Carlos III de Madrid

Cálculo Diferencial Aplicado

FINAL EXAM 1

Autores:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 (2.0 mark) Consider the following ordinary differential equation (ODE)

$$
y^{\prime \prime}+y=x e^{x}+2 e^{-x} .
$$

i) Find the general solution of the ODE.
ii) Find the solution satisfying the initial conditions $y(0)=1, y^{\prime}(0)=1$.

SOLUCIÓN:

i) Let us first solve the associated homogeneous equation. The roots of the characteristic equation $r^{2}+1=0$ are $\pm i$, thus the general solution of the homogeneous equation is given by $y_{h}(x)=c_{1} \cos (x)+c_{2} \sin (x)$, where c_{1} and c_{2} are two arbitrary constants.
Now, a particular solution of the given nonhomogeneous equation can be found by the method of undetermined coefficients (together with the principle of superposition) in the form $y_{p}(x)=(A x+B) e^{x}+C e^{-x}$. Hence, we get $A=1 / 2, B=-1 / 2$, and $C=1$.
Finally, the general solution of the ODE is

$$
y(x)=y_{h}(x)+y_{p}(x)=c_{1} \cos (x)+c_{2} \sin (x)+\frac{1}{2}(x-1) e^{x}+e^{-x}
$$

ii) After imposing the given initial conditions, we get $c_{1}=1 / 2$ and $c_{2}=2$. Thus, the desired solution is

$$
y(x)=\frac{1}{2} \cos (x)+2 \sin (x)+\frac{1}{2}(x-1) e^{x}+e^{-x}
$$

Problem 2 (2.0 mark) Consider the following system of first-order differential equations

$$
\vec{X}^{\prime}(t)=\left(\begin{array}{ll}
2 & -2 \\
8 & -6
\end{array}\right) \vec{X}(t)
$$

for $t>0$.
i) Find the general solution of the system and verify the results.
ii) Analyze the behavior of the solution calculated in (i) as $t \rightarrow+\infty$. Can this behavior depend on the initial condition possibly assigned to the system?

SOLUCIÓN:

i) Let us solve the system by calculating the eigenvalues λ of the coefficients matrix, which are both real and equal to $\lambda=-2$. One associated eigenvector is then $\vec{u}=(1,2)^{T}$, where the symbol ${ }^{T}$ stands for the transpose. Thus, the general solution of the system is given by

$$
\vec{X}(t)=\binom{X_{1}(t)}{X_{2}(t)}=c_{1}\binom{1}{2} e^{-2 t}+c_{2}\left[\binom{1}{2} t e^{-2 t}+\binom{w_{1}}{w_{2}} e^{-2 t}\right]
$$

where c_{1}, c_{2} are two arbitrary constants and the vector $\vec{w}=\left(w_{1}, w_{2}\right)^{T}$ satisfies the generalized eigenvalue problem

$$
\left(\begin{array}{cc}
2-\lambda & -2 \\
8 & -6-\lambda
\end{array}\right) \vec{w}=\vec{u}
$$

with λ and \vec{u} as given above. Thus, it follows that $\vec{w}=(1 / 2,1 / 2)^{T}$. Finally, upon calculation of the involved derivatives, the validity of the results can be readily checked.
ii) Taking into account that

$$
\lim _{t \rightarrow+\infty} e^{-2 t}=0, \quad \lim _{t \rightarrow+\infty} t e^{-2 t}=0
$$

we can conclude that, independently of the values of c_{1} and c_{2}, the behavior of the general solution of the system as $t \rightarrow+\infty$ is given by

$$
\lim _{t \rightarrow+\infty} \vec{X}(t)=\lim _{t \rightarrow+\infty}\binom{X_{1}(t)}{X_{2}(t)}=\binom{0}{0} .
$$

Since a possible initial condition only affects the values of c_{1} and c_{2}, then such condition will not influence the system's behavior as $t \rightarrow+\infty$.

Problem 3 (2.0 mark) Let $g(x)=-1-x / 2$. Then, solve the following initial value problem

$$
\left\{\begin{aligned}
-\frac{2 y+x}{y+x} y^{\prime} & =\frac{2 y}{x^{2}}(1+g), \quad x \geq 1, \\
y(1) & =1
\end{aligned}\right.
$$

SOLUCIÓN:

After substituting $g(x)$ into the given differential equation, we get

$$
-\frac{2 y+x}{y+x} y^{\prime}=\frac{2 y}{x^{2}}\left(-\frac{x}{2}\right) \quad \Longrightarrow \quad \frac{-2 y-x}{y+x} y^{\prime}=-\frac{y}{x} .
$$

This is a nonlinear, homogeneous, first-order ODE. In order to solve it, we can use the change of variable $v=y / x$, which yields $x v^{\prime}+v=y^{\prime}$ and

$$
\begin{gathered}
\frac{-2 y-x}{y+x} y^{\prime}=-\frac{y}{x} \Longrightarrow \frac{-\frac{2 y}{x}-1}{\frac{y}{x}+1} y^{\prime}=-\frac{y}{x} \\
\frac{-2 v-1}{v+1}\left(x v^{\prime}+v\right)=-v \quad \Longrightarrow \quad x v^{\prime}=-\frac{v^{2}}{2 v+1} \quad \Longrightarrow \quad-\frac{2 v+1}{v^{2}} v^{\prime}=\frac{1}{x}
\end{gathered}
$$

Then, solving the last separable equation, we get

$$
-2 \ln |v|+\frac{1}{v}-\ln x=c,
$$

where c is an arbitrary constant. Finally, using $v=y / x$ and the initial condition $y(1)=1$, an implicit expression for the desired solution is obtained as

$$
-2 \ln \left|\frac{y}{x}\right|+\frac{x}{y}-\ln x=1
$$

Problem 4 (2.0 mark) Consider the following heat equation

$$
\begin{array}{rll}
\text { Partial Differential Equation (PDE) } & : & \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial u}{\partial t}(x, t), t>0, x \in(0, \pi) \\
\text { Boundary Conditions (BCs) } & : & u(0, t)=0, u(\pi, t)=0, t>0 \\
\text { Initial Condition (IC) } & : & u(x, 0)=f(x), x \in[0, \pi] .
\end{array}
$$

Apply a separation of variables as $u(x, t)=X(x) T(t) \not \equiv 0$.
i) Prove that $T(t)=c e^{-\lambda t}$, where $c \in \mathbb{R} \backslash\{0\}$ and λ is the separation constant.
ii) Prove that $X(x)$ satisfies the following boundary value problem

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, X(\pi)=0
$$

and find the values of $\lambda>0$ providing nonzero solutions.
iii) Knowing that the solution $u(x, t)$ can be expressed as

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-n^{2} t} \sin (n x), \text { with } A_{n} \in \mathbb{R}
$$

find the coefficients $A_{n}(n \in \mathbb{N})$ supposing that $f(x)=\sin ^{3}(x)$.
Hint. The following results can be useful.

- Given $L>0$ and $m, n \in \mathbb{N}$, we have $\int_{0}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) \mathrm{d} x=\left\{\begin{array}{l}0, m \neq n \\ L / 2, m=n .\end{array}\right.$
- $\sin (3 x)=\sin (x)\left(3-4 \sin ^{2}(x)\right), \forall x \in \mathbb{R}$.

SOLUCIÓN:

i) After applying the separation of variables to the PDE, we get

$$
X^{\prime \prime} T=X T^{\prime} \quad \Longrightarrow \quad \frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=-\lambda,
$$

where λ is the separation constant. Thus, the first equality $T^{\prime} / T=-\lambda$ yields the firstorder, linear ordinary differential equation $T^{\prime}+\lambda T=0$, whose nonzero solutions are given by $T(t)=c e^{-\lambda t}$, where $c \in \mathbb{R} \backslash\{0\}$.
ii) The second equality $X^{\prime \prime} / X=-\lambda$ above provides the second-order, linear ordinary differential equation $X^{\prime \prime}+\lambda X=0$. In order to obtain the values of X on the boundaries, we need to apply the BCs as

$$
\begin{array}{ll}
u(0, t)=X(0) T(t)=0 \Longrightarrow X(0)=0 ; & \text { hence the equality holds } \forall t>0, T(t) \not \equiv 0 ; \\
u(\pi, t)=X(\pi) T(t)=0 \Longrightarrow X(\pi)=0 ; & \text { hence the equality holds } \forall t>0, T(t) \not \equiv 0 .
\end{array}
$$

Now, let $\lambda=a^{2}>0$, with $a>0$. Then, the characteristic equation is given by $r^{2}+a^{2}=0$, which yields $r= \pm i a, i \in \mathbb{C}$. Hence

$$
X(x)=c_{1} \cos (a x)+c_{2} \sin (a x),
$$

where c_{1} and c_{2} are two arbitrary constants. Finally, $X(0)=0 \Longrightarrow c_{1}=0$, while $X(\pi)=$ $0 \Longrightarrow c_{2} \sin (a \pi)=0$, which $\left(c_{2} \neq 0\right)$ provides $\sin (a \pi)=0 \Longrightarrow a=n, n=1,2,3, \ldots$. Thus, we get $\lambda=n^{2}, n=1,2,3, \ldots$.
iii) The given IC yields

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n x)=f(x)=\sin ^{3}(x)=\frac{3}{4} \sin (x)-\frac{1}{4} \sin (3 x),
$$

where the second hint above has been used. Then, by matching terms in the series with terms in the right-hand side of this equality, we conclude that

$$
A_{1}=\frac{3}{4}, \quad A_{2}=0, \quad A_{3}=-\frac{1}{4}, \quad A_{n}=0 \forall n \geq 4 .
$$

Another (much more involved) way of solving the same task consists in calculating the coefficients by means of the formula $A_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) \mathrm{d} x$, which is obtained using the first hint above with $L=\pi$.

Problem 5 (2.0 mark) Consider the initial value problem

$$
\left\{\begin{aligned}
y^{\prime} & =1+\frac{y}{2} \\
y(0) & =0
\end{aligned}\right.
$$

to which the following numerical scheme (improved Euler) is applied

$$
Y_{n+1}=Y_{n}+\frac{h}{2}\left[f\left(t_{n}, Y_{n}\right)+f\left(t_{n+1}, Y_{n}+h f\left(t_{n}, Y_{n}\right)\right)\right]
$$

i) Calculate, by using steps $h_{1}=0.2$ and $h_{2}=0.1$, the quantities $Y_{t=0.4}^{h_{1}}$ and $Y_{t=0.4}^{h_{2}}$, which are approximated values of $y(0.4)$.
ii) Estimate the order of the numerical method by means of the results obtained in (i), noting that the exact solution of the problem is $y(t)=2\left(e^{t / 2}-1\right)$.

SOLUCIÓN:

i) By applying the given numerical scheme to the initial value problem we get for each $n=$ $0,1,2, \ldots$

$$
\begin{gathered}
Y_{n+1}=Y_{n}+\frac{h}{2}\left[1+\frac{Y_{n}}{2}+1+\frac{1}{2}\left(Y_{n}+h\left(1+\frac{Y_{n}}{2}\right)\right)\right] \\
Y_{n+1}=Y_{n}+h\left(1+\frac{Y_{n}}{2}\right)+\frac{h^{2}}{4}\left(1+\frac{Y_{n}}{2}\right)
\end{gathered}
$$

together with $Y_{0}=0$. Then, using $h_{1}=0.2$, we have $Y_{1}^{h_{1}}=0.21, Y_{2}^{h_{1}}=0.44205$. On the other hand, using $h_{2}=0.1$, we have $Y_{1}^{h_{2}}=0.1025, Y_{2}^{h_{2}}=0.21025, Y_{3}^{h_{2}}=0.32353$, $Y_{4}^{h_{2}}=0.44261$.
ii) We have

$$
\begin{gathered}
E_{t=0.4}^{h_{1}}=\left|Y_{t=0.4}^{h_{1}}-y(0.4)\right|=7.55516 \times 10^{-4} \\
E_{t=0.4}^{h_{2}}=\left|Y_{t=0.4}^{h_{2}}-y(0.4)\right|=1.95516 \times 10^{-4}
\end{gathered}
$$

In addition, $h_{2}=h_{1} / 2$. Thus

$$
E_{t=0.4}^{h_{2}} \sim h_{2}^{p}=\left(\frac{h_{1}}{2}\right)^{p} \sim \frac{E_{t=0.4}^{h_{1}}}{2^{p}}
$$

where p is the order of the method. Using the logarithm, we finally get $p \approx 1.95$, which suggests that the desired order is 2 .

