uc3m | Universidad Carlos III de Madrid

Cálculo Diferencial Aplicado

FINAL EXAM 2

Autores:
Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 (2.0 mark) Consider the differential equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\ln x, \quad x>0$.
(i) Apply a change of variable to transform it into an equation with constant coefficients.
(ii) Solve the obtained equation together with the conditions $y(1)=1 / 2, \quad y^{\prime}(1)=1$.

SOLUCIÓN:

(i) After applying the change of variable $x=e^{t}$, the given differential equation becomes

$$
\frac{d^{2} y(t)}{d t^{2}}-4 \frac{d y(t)}{d t}+4 y(t)=t
$$

which has constant coefficients.
(ii) The characteristic equation of the corresponding homogeneous ODE has a unique root, namely $r=2$. Hence, the general solution of this ODE is given by

$$
y_{h}(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}
$$

A particular solution of the nonhomogeneous ODE can be found as $y_{p}(t)=A t+B$, where $A=1 / 4$ and $B=1 / 4$. Then, the general solution of the equation at point (i) is

$$
y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}+\frac{1}{4}(t+1)
$$

Finally, going back to the original independent variable x, we get the general solution of the given differential equation as

$$
y(x)=c_{1} x^{2}+c_{2} x^{2} \ln x+\frac{1}{4}(\ln x+1)
$$

Using the conditions $y(1)=1 / 2$ and $y^{\prime}(1)=1$ yields $c_{1}=1 / 4$ and $c_{2}=1 / 4$. Hence, the final solution reads

$$
y(x)=\frac{1}{4}\left(x^{2}+x^{2} \ln x+\ln x+1\right) \quad \Longrightarrow \quad y(x)=\left(x^{2}+1\right)(\ln x+1) / 4 .
$$

Problem 2 (2.0 mark) Consider the following system of first-order differential equations

$$
\binom{X_{1}^{\prime}(t)}{X_{2}^{\prime}(t)}=\left(\begin{array}{cc}
2 & -5 \\
\alpha & -2
\end{array}\right)\binom{X_{1}(t)}{X_{2}(t)}
$$

with $\alpha \in \mathbb{R}$ and $t>0$.
(i) Find the value of α for which the qualitative behavior of the solutions of the system changes (hint: calculate the eigenvalues of the coefficients matrix in terms of α). Justify your answer.
(ii) Find the solution of the system for $\alpha=1$ and $\left(X_{1}(0), X_{2}(0)\right)=(1,0)$. In addition, calculate the distance $d(t)$ between the position $(0,0)$ and the position of a particle that moves according to the computed solution (hint: use formula $d(t)=\sqrt{X_{1}(t)^{2}+X_{2}(t)^{2}}$).

SOLUCIÓN:

(i) The eigenvalues of the coefficients matrix are

$$
r_{1}=\sqrt{4-5 \alpha}, \quad r_{2}=-\sqrt{4-5 \alpha} .
$$

If $\alpha<4 / 5$ such eigenvalues are real with opposite signs, hence the solutions of the system are linear combinations of exponential functions.
On the other hand, if $\alpha>4 / 5$ the eigenvalues are (purely imaginary) complex conjugates, hence the solutions of the system are periodic.
As a consequence, the qualitative behavior of the solutions changes for $\alpha=4 / 5$.
(ii) For $\alpha=1$ the eigenvalues and eigenvectors of the coefficients matrix are given by

$$
\begin{array}{ccc}
r_{1}=i & \Longrightarrow & \vec{u}_{1}=\binom{2+i}{1} \\
r_{2}=-i & \Longrightarrow & \vec{u}_{2}=\binom{2-i}{1}
\end{array}
$$

The general solution of the system is then

$$
\binom{X_{1}(t)}{X_{2}(t)}=c_{1}\binom{2 \cos t-\sin t}{\cos t}+c_{2}\binom{2 \sin t+\cos t}{\sin t},
$$

where c_{1} and c_{2} are arbitrary constants. If the mentioned particle starts from the position $(1,0)$ at $t=0$, then c_{1} and c_{2} satisfy

$$
\binom{1}{0}=c_{1}\binom{2}{1}+c_{2}\binom{1}{0},
$$

namely $c_{1}=0$ and $c_{2}=1$. Finally, the desired distance is given by

$$
d(t)=\sqrt{X_{1}(t)^{2}+X_{2}(t)^{2}}=\sqrt{4 \sin ^{2} t+4 \sin t \cos t+1} \text {. }
$$

Problem 3 (2.0 mark) Solve the following initial value problem

$$
\left\{\begin{array}{cll}
x^{2}+e^{y}+\left(x e^{y}+\cos y\right) y^{\prime} & =0 \\
y(0) & =g(\pi / 2),
\end{array}\right.
$$

knowing that the function g verifies

$$
g^{\prime}(x)=\sin (x), \quad g(0)=-1 .
$$

SOLUCIÓN:

We have that $g(x)=-\cos (x)$, so that $g(\pi / 2)=0=y(0)$. On the other hand, the given differential equation is exact. Thus, there exists a function $F(x, y(x))$ such that $\partial F / \partial x=x^{2}+e^{y}, \partial F / \partial y=$ $x e^{y}+\cos y$, hence

$$
\frac{d F}{d x}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0 .
$$

The function F can be obtained by integrating $\partial F / \partial x$ as

$$
F=\int\left(x^{2}+e^{y}\right) d x=\frac{x^{3}}{3}+x e^{y}+\phi(y) .
$$

In order to get the function $\phi(y)$, let us differentiate the previous expression with respect to y and equate the result to $\partial F / \partial y=x e^{y}+\cos y$, from what we get $\phi^{\prime}(y)=\cos y$ and thus $\phi(y)=\sin y$ (taking the integration constant equal to zero). As a consequence

$$
F=\frac{x^{3}}{3}+x e^{y}+\sin y
$$

From $d F / d x=0$ we get $x^{3} / 3+x e^{y}+\sin y=C$. Furthermore, $y(0)=0$ implies $C=0$. Finally, the desired solution is

$$
\frac{x^{3}}{3}+x e^{y}+\sin y=0
$$

Problem 4 (2.0 mark) Consider the following model for the heat equation.

$$
\begin{array}{rll}
\text { Partial Differential Equation (PDE) } & : & \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial u}{\partial t}(x, t), t>0, x \in(0, \pi / 3) \\
\text { Boundary Conditions (BC) } & : & \frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(\pi / 3, t)=0, t>0 \\
\text { Initial Condition (IC) } & : & u(x, 0)=f(x), x \in[0, \pi / 3] .
\end{array}
$$

Apply the separation of variables $u(x, t)=X(x) T(t) \not \equiv 0$.
(i) Prove that $X(x)$ satisfies the following boundary value problem

$$
X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=0, \quad X^{\prime}(\pi / 3)=0,
$$

and find the values of the separation constant $\lambda \geq 0$ providing nonzero solutions.
(ii) Knowing that the solution $u(x, t)$ can be expressed as

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-9 n^{2} t} \cos (3 n x), \quad \text { with } A_{n} \in \mathbb{R}
$$

find the approximate value of $u(\pi / 6,1 / 9)$ by considering the first three terms only of the previous series and taking $f(x)=2 x+1$.

Note. The following result may be useful.
Given $L>0$ and $m, n \in \mathbb{N} \cup\{0\}$, we have $\int_{0}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x=\left\{\begin{array}{l}0 ; m \neq n \\ L / 2 ; m=n \neq 0 \\ L ; m=n=0 .\end{array}\right.$

SOLUCIÓN:

(i) By applying the separation of variables, we obtain $\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=-\lambda$, where λ is the separation constant. Hence $X^{\prime \prime}+\lambda X=0$. In addition, by using the BC we get

$$
\begin{gathered}
\frac{\partial u}{\partial x}(0, t)=X^{\prime}(0) T(t)=0 \Longrightarrow X^{\prime}(0)=0, \text { holding } \forall t \text { and } T(t) \not \equiv 0 \\
\frac{\partial u}{\partial x}(\pi / 3, t)=X^{\prime}(\pi / 3) T(t)=0 \Longrightarrow X^{\prime}(\pi / 3)=0, \text { holding } \forall t \text { and } T(t) \not \equiv 0
\end{gathered}
$$

Let us now distinguish two cases.
Case 1. $\lambda=0$
$X^{\prime \prime}=0 \Longrightarrow X(x)=c_{1} x+c_{2}$ with $c_{1}, c_{2} \in \mathbb{R}$. As $X^{\prime}(x)=c_{1}$, we have that $X^{\prime}(0)=0=$ $c_{1}=X^{\prime}(\pi / 3)$. Hence, if $\lambda=0$ then the function $X(x)=c_{2} \neq 0$ is a nonzero solution of the problem.

Case 2. $\lambda>0$
Let us take $\lambda=a^{2}$, with $a>0$. The corresponding characteristic equation is then $r^{2}+a^{2}=$ $0 \Longrightarrow r= \pm i a, i \in \mathbb{C}$. Hence

$$
X(x)=c_{1} \cos (a x)+c_{2} \sin (a x) ; \quad X^{\prime}(x)=-a c_{1} \sin (a x)+a c_{2} \cos (a x), \text { with } c_{1}, c_{2} \in \mathbb{R}
$$

Applying the BC we get $X^{\prime}(0)=0 \Longrightarrow c_{2}=0 ; X^{\prime}(\pi / 3)=0 \Longrightarrow-a c_{1} \sin (a \pi / 3)=0$. Then, imposing $c_{1} \neq 0$ yields $\sin (a \pi / 3)=0 \Longrightarrow a \pi / 3=n \pi \Longrightarrow a=3 n, n=1,2,3, \ldots$. Finally, $\lambda=(3 n)^{2}=9 n^{2}, n=1,2,3, \ldots$.
(ii) We need to calculate

$$
u(\pi / 6,1 / 9) \approx A_{0}+A_{1} e^{-1} \cos (\pi / 2)+A_{2} e^{-4} \cos (\pi)=A_{0}-\frac{A_{2}}{e^{4}}
$$

In order to compute the coefficients A_{0} and A_{2}, let us apply the IC as to get

$$
u(x, 0)=\sum_{n=0}^{\infty} A_{n} \cos (3 n x)=f(x)=2 x+1 .
$$

In addition, using the orthogonality condition suggested in the note, we deduce that the coefficients A_{n} satisfy

$$
\begin{gathered}
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x=\frac{3}{\pi} \int_{0}^{\pi / 3}(2 x+1) d x=1+\pi / 3 \\
(n \geq 1) \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos (3 n x) d x=\frac{6}{\pi} \int_{0}^{\pi / 3}(2 x+1) \cos (3 n x) d x \\
\Longrightarrow A_{2}=\frac{6}{\pi} \int_{0}^{\pi / 3}(2 x+1) \cos (6 x) d x=\frac{1}{\pi}\left[(2 x+1) \sin (6 x)+\frac{1}{3} \cos (6 x)\right]_{0}^{\pi / 3}=0 .
\end{gathered}
$$

Hence, the desired approximation is $u(\pi / 6,1 / 9) \approx 1+\pi / 3$.

Problem 5 (2.0 mark) The following initial value problem

$$
\left\{\begin{aligned}
y^{\prime} & =t+\frac{y}{2}+1 \\
y(0) & =1
\end{aligned}\right.
$$

must be numerically solved by using the Adams-Bashforth scheme

$$
Y_{n+2}=Y_{n+1}+\frac{3}{2} h f\left(t_{n+1}, Y_{n+1}\right)-\frac{1}{2} h f\left(t_{n}, Y_{n}\right)
$$

(i) Calculate the approximated solution $Y_{t=0.3}^{h_{1}}$ of $y(0.3)$ with step $h_{1}=0.1$, knowing that Y_{1} has to be computed by the explicit Euler method.
(ii) After noting that step $h_{2}=0.01$ yields the approximation $Y_{t=0.3}^{h_{2}}=1.5327258$, estimate the order of the numerical scheme by means of $Y_{t=0.3}^{h_{1}}, Y_{t=0.3}^{h_{2}}$, and the exact solution given by $y(t)=7 e^{t / 2}-2(t+3)$.

SOLUCIÓN:

(i) From the initial condition we get $Y_{0}=1$, while the explicit Euler method provides $Y_{1}^{h_{1}}=1.15$. Finally, the Adams-Bashforth scheme yields $Y_{2}^{h_{1}}=1.32625$ and $Y_{3}^{h_{1}} \equiv Y_{t=0.3}^{h_{1}}=1.52197$.
(ii) Let us calculate

$$
E_{t=0.3}^{h_{1}}=\left|Y_{t=0.3}^{h_{1}}-y(0.3)\right|=0.01087095 \quad \text { and } \quad E_{t=0.3}^{h_{2}}=\left|Y_{t=0.3}^{h_{2}}-y(0.3)\right|=0.00011390
$$

As the reduction factor between steps h_{1} and h_{2} is $q=10$, we have

$$
E_{t=0.3}^{h_{2}} \approx h_{2}^{p}=\left(\frac{h_{1}}{10}\right)^{p} \approx \frac{E_{t=0.3}^{h_{1}}}{10^{p}},
$$

where p is the order of the method. After taking the logarithms, we get $p \approx 1.98$. Hence, we can estimate the order of the given numerical scheme as $p=2$.

