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Problem 1 (2.0 mark) Consider the differential equation x2y′′ − 3xy′ + 4y = lnx , x > 0 .

(i) Apply a change of variable to transform it into an equation with constant coefficients.

(ii) Solve the obtained equation together with the conditions y(1) = 1/2 , y′(1) = 1 .

SOLUCIÓN:

(i) After applying the change of variable x = e t, the given differential equation becomes

d2y(t)

dt2
− 4

dy(t)

dt
+ 4y(t) = t ,

which has constant coefficients.

(ii) The characteristic equation of the corresponding homogeneous ODE has a unique root, namely
r = 2 . Hence, the general solution of this ODE is given by

yh(t) = c1e
2t + c2te

2t .

A particular solution of the nonhomogeneous ODE can be found as yp(t) = At + B , where
A = 1/4 and B = 1/4. Then, the general solution of the equation at point (i) is

y(t) = c1e
2t + c2te

2t +
1

4
(t+ 1) .

Finally, going back to the original independent variable x, we get the general solution of the
given differential equation as

y(x) = c1x
2 + c2x

2 lnx+
1

4
(lnx+ 1) .

Using the conditions y(1) = 1/2 and y′(1) = 1 yields c1 = 1/4 and c2 = 1/4 . Hence, the final
solution reads



y(x) =
1

4
(x2 + x2 lnx+ lnx+ 1) =⇒ y(x) = (x2 + 1)(lnx+ 1)/4 .

Problem 2 (2.0 mark) Consider the following system of first-order differential equations(
X ′1(t)
X ′2(t)

)
=

(
2 −5
α −2

)(
X1(t)
X2(t)

)
with α ∈ R and t > 0 .

(i) Find the value of α for which the qualitative behavior of the solutions of the system changes
(hint : calculate the eigenvalues of the coefficients matrix in terms of α). Justify your answer.

(ii) Find the solution of the system for α = 1 and (X1(0), X2(0)) = (1, 0) . In addition, calculate
the distance d(t) between the position (0, 0) and the position of a particle that moves according
to the computed solution (hint : use formula d(t) =

√
X1(t)2 +X2(t)2 ) .

SOLUCIÓN:

(i) The eigenvalues of the coefficients matrix are

r1 =
√

4− 5α , r2 = −
√

4− 5α .

If α < 4/5 such eigenvalues are real with opposite signs, hence the solutions of the system
are linear combinations of exponential functions.

On the other hand, if α > 4/5 the eigenvalues are (purely imaginary) complex conjugates,
hence the solutions of the system are periodic.

As a consequence, the qualitative behavior of the solutions changes for α = 4/5 .

(ii) For α = 1 the eigenvalues and eigenvectors of the coefficients matrix are given by

r1 = i =⇒ ~u1 =

(
2 + i

1

)
r2 = −i =⇒ ~u2 =

(
2− i

1

)
.

The general solution of the system is then(
X1(t)
X2(t)

)
= c1

(
2 cos t− sin t

cos t

)
+ c2

(
2 sin t+ cos t

sin t

)
,

where c1 and c2 are arbitrary constants. If the mentioned particle starts from the position
(1, 0) at t = 0, then c1 and c2 satisfy(

1
0

)
= c1

(
2
1

)
+ c2

(
1
0

)
,

namely c1 = 0 and c2 = 1 . Finally, the desired distance is given by

d(t) =
√
X1(t)2 +X2(t)2 =

√
4 sin2 t+ 4 sin t cos t+ 1 .



Problem 3 (2.0 mark) Solve the following initial value problem{
x2 + e y + (xe y + cos y) y′ = 0

y(0) = g(π/2) ,

knowing that the function g verifies

g′(x) = sin(x) , g(0) = −1 .

SOLUCIÓN:
We have that g(x) = − cos(x) , so that g(π/2) = 0 = y(0) . On the other hand, the given differential
equation is exact. Thus, there exists a function F (x, y(x)) such that ∂F/∂x = x2 + e y , ∂F/∂y =
xe y + cos y , hence

dF

dx
=
∂F

∂x
+
∂F

∂y

dy

dx
= 0 .

The function F can be obtained by integrating ∂F/∂x as

F =

∫ (
x2 + e y

)
dx =

x3

3
+ xe y + φ(y) .

In order to get the function φ(y) , let us differentiate the previous expression with respect to y and
equate the result to ∂F/∂y = xe y + cos y , from what we get φ′(y) = cos y and thus φ(y) = sin y
(taking the integration constant equal to zero). As a consequence

F =
x3

3
+ xe y + sin y .

From dF/dx = 0 we get x3/3 + xe y + sin y = C . Furthermore, y(0) = 0 implies C = 0 . Finally,
the desired solution is

x3

3
+ xe y + sin y = 0 .

Problem 4 (2.0 mark) Consider the following model for the heat equation.

Partial Differential Equation (PDE) :
∂2u

∂x2
(x, t) =

∂u

∂t
(x, t) , t > 0 , x ∈ (0, π/3)

Boundary Conditions (BC) :
∂u

∂x
(0, t) = 0 ,

∂u

∂x
(π/3, t) = 0 , t > 0

Initial Condition (IC) : u(x, 0) = f(x) , x ∈ [0, π/3] .

Apply the separation of variables u(x, t) = X(x)T (t) 6≡ 0 .

(i) Prove that X(x) satisfies the following boundary value problem

X ′′ + λX = 0 , X ′(0) = 0 , X ′(π/3) = 0 ,

and find the values of the separation constant λ ≥ 0 providing nonzero solutions.



(ii) Knowing that the solution u(x, t) can be expressed as

u(x, t) =

∞∑
n=0

Ane
−9n2t cos (3nx) , with An ∈ R ,

find the approximate value of u(π/6, 1/9) by considering the first three terms only of the
previous series and taking f(x) = 2x+ 1 .

Note. The following result may be useful.

Given L > 0 and m,n ∈ N ∪ {0} , we have

∫ L

0
cos
(mπ
L
x
)

cos
(nπ
L
x
)
dx =


0 ; m 6= n

L/2 ; m = n 6= 0

L ; m = n = 0 .

SOLUCIÓN:

(i) By applying the separation of variables, we obtain
T ′

T
=
X ′′

X
= −λ , where λ is the separation

constant. Hence X ′′ + λX = 0 . In addition, by using the BC we get

∂u

∂x
(0, t) = X ′(0)T (t) = 0 =⇒ X ′(0) = 0 , holding ∀t and T (t) 6≡ 0 ;

∂u

∂x
(π/3, t) = X ′(π/3)T (t) = 0 =⇒ X ′(π/3) = 0 , holding ∀t and T (t) 6≡ 0 .

Let us now distinguish two cases.

Case 1. λ = 0

X ′′ = 0 =⇒ X(x) = c1x + c2 with c1 , c2 ∈ R . As X ′(x) = c1 , we have that X ′(0) = 0 =

c1 = X ′(π/3) . Hence, if λ = 0 then the function X(x) = c2 6= 0 is a nonzero solution of the
problem.

Case 2. λ > 0

Let us take λ = a2 , with a > 0 . The corresponding characteristic equation is then r2 + a2 =
0 =⇒ r = ±ia , i ∈ C . Hence

X(x) = c1 cos(ax) + c2 sin(ax) ; X ′(x) = −ac1 sin(ax) + ac2 cos(ax) , with c1 , c2 ∈ R .

Applying the BC we get X ′(0) = 0 =⇒ c2 = 0 ; X ′(π/3) = 0 =⇒ −ac1 sin(aπ/3) = 0 .
Then, imposing c1 6= 0 yields sin(aπ/3) = 0 =⇒ aπ/3 = nπ =⇒ a = 3n , n = 1, 2, 3, . . . .

Finally, λ = (3n)2 = 9n2 , n = 1, 2, 3, . . . .

(ii) We need to calculate

u(π/6, 1/9) ≈ A0 +A1e
−1 cos(π/2) +A2e

−4 cos(π) = A0 −
A2

e 4
.

In order to compute the coefficients A0 and A2 , let us apply the IC as to get

u(x, 0) =
∞∑
n=0

An cos (3nx) = f(x) = 2x+ 1 .



In addition, using the orthogonality condition suggested in the note, we deduce that the
coefficients An satisfy

A0 =
1

L

∫ L

0
f(x)dx =

3

π

∫ π/3

0
(2x+ 1)dx = 1 + π/3 ,

(n ≥ 1) An =
2

L

∫ L

0
f(x) cos(3nx)dx =

6

π

∫ π/3

0
(2x+ 1) cos(3nx)dx

=⇒ A2 =
6

π

∫ π/3

0
(2x+ 1) cos(6x)dx =

1

π

[
(2x+ 1) sin(6x) +

1

3
cos(6x)

]π/3
0

= 0 .

Hence, the desired approximation is u(π/6, 1/9) ≈ 1 + π/3 .

Problem 5 (2.0 mark) The following initial value problem{
y′ = t+

y

2
+ 1

y(0) = 1

must be numerically solved by using the Adams–Bashforth scheme

Yn+2 = Yn+1 +
3

2
h f(tn+1, Yn+1)−

1

2
h f(tn, Yn) .

(i) Calculate the approximated solution Y h1
t=0.3 of y(0.3) with step h1 = 0.1 , knowing that Y1 has

to be computed by the explicit Euler method.

(ii) After noting that step h2 = 0.01 yields the approximation Y h2
t=0.3 = 1.5327258 , estimate the

order of the numerical scheme by means of Y h1
t=0.3 , Y h2

t=0.3 , and the exact solution given by
y(t) = 7e t/2 − 2(t+ 3) .

SOLUCIÓN:

(i) From the initial condition we get Y0 = 1 , while the explicit Euler method provides Y h1
1 = 1.15 .

Finally, the Adams–Bashforth scheme yields Y h1
2 = 1.32625 and Y h1

3 ≡ Y h1
t=0.3 = 1.52197 .

(ii) Let us calculate

Eh1t=0.3 =
∣∣∣Y h1
t=0.3 − y(0.3)

∣∣∣ = 0.01087095 and Eh2t=0.3 =
∣∣∣Y h2
t=0.3 − y(0.3)

∣∣∣ = 0.00011390 .

As the reduction factor between steps h1 and h2 is q = 10 , we have

Eh2t=0.3 ≈ hp2 =

(
h1
10

)p
≈ Eh1t=0.3

10p
,

where p is the order of the method. After taking the logarithms, we get p ≈ 1.98 . Hence, we
can estimate the order of the given numerical scheme as p = 2 .


