uc3m Universidad Carlos III de Madrid

Applied Differential Calculus

Self-Assessment: Test 1

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Consider the first-order differential equation

$$(3kx^2y + e^y) + (x^3 + kxe^y - 2yk^2)y' = 0,$$

where k is a real parameter.

- (a) Find the value of k that makes the equation exact.
- (b) Solve the equation for that value of k.

SOLUTION:

Let $M(x,y) = 3kx^2y + e^y$ and $N(x,y) = x^3 + kxe^y - 2yk^2$. Then, the equation is exact if

$$\frac{\partial M}{\partial y} = 3kx^2 + e^y = 3x^2 + ke^y = \frac{\partial N}{\partial x},$$

which is satisfied if k=1. As a consequence, for k=1, there exists a function $\psi(x,y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y) = 3x^2 y + e^y, \qquad (1)$$

$$\frac{\partial \psi}{\partial y} = N(x, y) = x^3 + xe^y - 2y. \tag{2}$$

Now, integration of (3) with respect to x yields $\psi(x,y) = yx^3 + xe^y + g(y)$, where g(y) is a function to be determined. Then, equating the derivative with respect to y of the previous expression with (4) provides

$$\frac{\partial \psi}{\partial y} = x^3 + xe^y + \frac{dg}{dy} = x^3 + xe^y - 2y,$$

hence

$$\frac{dg}{dy} \, = \, -2y \qquad \Longrightarrow \qquad g(y) \, = \, -y^2 + \alpha \, , \quad \alpha \in \mathbb{R} \, .$$

Using one of the possible expressions for g(y) obtained for $\alpha = 0$, the general solution of the equation can be finally written as

$$\psi(x,y) = c \qquad \Longleftrightarrow \qquad \boxed{yx^3 + xe^y - y^2 = c}$$

where c is an arbitrary constant.

Problem 2 Solve the following first-order differential equation

$$y = (x + \sqrt{xy}) y'$$

for x > 0, together with the initial condition y(1) = 1.

SOLUTION:

This is a nonlinear, homogeneous, first-order differential equation. In order to solve it, we can use the change of variable v = y/x, which yields xv' + v = y'. Then

$$-vx + \left(x + \sqrt{x^2v}\right) \left(v'x + v\right) = 0 \implies v'\left(x^2 + x^2\sqrt{v}\right) + xv^{3/2} = 0$$
$$\implies v'\left(v^{-3/2} + \frac{1}{v}\right) + \frac{1}{x} = 0,$$

which is a separable equation in v . Thus, we get

$$-2v^{-1/2} + \ln|v| + \ln x = c,$$

where c is an arbitrary constant. Finally, using v = y/x and the initial condition y(1) = 1, an implicit expression for the desired solution is obtained as

$$\boxed{-2\sqrt{\frac{x}{y}} + \ln\frac{|y|}{x} + \ln x = -2}.$$

Problem 3 Consider the first-order differential equation

$$(\sin^2 x + 4xye^{xy^2} - x)y' + 2y\sin x\cos x + 2y^2e^{xy^2} - y = 0.$$

- (a) Classify the equation, justifying your answer.
- (b) Find the general solution of the equation.

SOLUTION:

(a) Let $M(x,y) = 2y \sin x \cos x + 2y^2 e^{xy^2} - y$ and $N(x,y) = \sin^2 x + 4xy e^{xy^2} - x$. Then, the equation is exact as

$$\frac{\partial M}{\partial y} = 2\sin x \cos x - 1 + 4xy^3 e^{xy^2} + 4ye^{xy^2} = \frac{\partial N}{\partial x}.$$

(a) As a consequence, there exists a function $\psi(x,y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y) = 2y \sin x \cos x + 2y^2 e^{xy^2} - y, \qquad (3)$$

$$\frac{\partial \psi}{\partial u} = N(x, y) = \sin^2 x + 4xye^{xy^2} - x. \tag{4}$$

Now, integration of (3) with respect to x yields $\psi(x,y) = y \sin^2 x - xy + 2e^{xy^2} + g(y)$, where g(y) is a function to be determined. Then, equating the derivative with respect to y of the previous expression with (4) provides

$$\frac{\partial \psi}{\partial y} = \sin^2 x + 4xye^{xy^2} - x + \frac{dg}{dy} = \sin^2 x + 4xye^{xy^2} - x,$$

hence

$$\frac{dg}{dy} = 0 \implies g(y) = \alpha, \quad \alpha \in \mathbb{R}.$$

Using one of the possible expressions for g(y) obtained for $\alpha = 0$, the general solution of the equation can be finally written as

$$\psi(x,y) = c \qquad \Longleftrightarrow \qquad \boxed{y\sin^2 x - xy + 2e^{xy^2} = c},$$

where c is an arbitrary constant.

Problem 4 Given the Ordinary Differential Equation (ODE):

$$-5x^4 + 2y + xy' = 0$$
 with $x > 0$,

- i) Classify this ODE.
- ii) Solve the ODE with initial condition y(1) = 2.

SOLUTION:

- i) First order linear non-homogeneous ODE.
- ii) We first find an integrating factor, which is x: $x^2y' + 2xy = 5x^5$. (From $y' + 2\frac{y}{x} = 5x^3$, we find the integrating factor: $e^{2\int dx/x} = e^{2\ln x} = x^2$). Then $(x^2y)' = 5x^5$ and

$$x^2y = \frac{5}{6}x^6 + c \Longrightarrow 2 = \frac{5}{6} + c \Longrightarrow c = \frac{7}{6}.$$

We get

$$y(x) = \frac{5}{6}x^4 + \frac{7}{6x^2}.$$