uc3m \mid Universidad Carlos III de Madrid

Applied Differential Calculus

Self-Assessment: Test 1

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Consider the first-order differential equation

$$
\left(3 k x^{2} y+e^{y}\right)+\left(x^{3}+k x e^{y}-2 y k^{2}\right) y^{\prime}=0,
$$

where k is a real parameter.
(a) Find the value of k that makes the equation exact.
(b) Solve the equation for that value of k.

SOLUTION:

Let $M(x, y)=3 k x^{2} y+e^{y}$ and $N(x, y)=x^{3}+k x e^{y}-2 y k^{2}$. Then, the equation is exact if

$$
\frac{\partial M}{\partial y}=3 k x^{2}+e^{y}=3 x^{2}+k e^{y}=\frac{\partial N}{\partial x},
$$

which is satisfied if $k=1$. As a consequence, for $k=1$, there exists a function $\psi(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \psi}{\partial x}=M(x, y)=3 x^{2} y+e^{y} \tag{1}\\
& \frac{\partial \psi}{\partial y}=N(x, y)=x^{3}+x e^{y}-2 y \tag{2}
\end{align*}
$$

Now, integration of (3) with respect to x yields $\psi(x, y)=y x^{3}+x e^{y}+g(y)$, where $g(y)$ is a function to be determined. Then, equating the derivative with respect to y of the previous expression with (4) provides

$$
\frac{\partial \psi}{\partial y}=x^{3}+x e^{y}+\frac{d g}{d y}=x^{3}+x e^{y}-2 y,
$$

hence

$$
\frac{d g}{d y}=-2 y \quad \Longrightarrow \quad g(y)=-y^{2}+\alpha, \quad \alpha \in \mathbb{R}
$$

Using one of the possible expressions for $g(y)$ obtained for $\alpha=0$, the general solution of the equation can be finally written as

$$
\psi(x, y)=c \quad \Longleftrightarrow \quad y x^{3}+x e^{y}-y^{2}=c
$$

where c is an arbitrary constant.

Problem 2 Solve the following first-order differential equation

$$
y=(x+\sqrt{x y}) y^{\prime}
$$

for $x>0$, together with the initial condition $y(1)=1$.

SOLUTION:

This is a nonlinear, homogeneous, first-order differential equation. In order to solve it, we can use the change of variable $v=y / x$, which yields $x v^{\prime}+v=y^{\prime}$. Then

$$
\begin{gathered}
-v x+\left(x+\sqrt{x^{2} v}\right) \\
\left(v^{\prime} x+v\right)=0 \quad \Longrightarrow \quad v^{\prime}\left(x^{2}+x^{2} \sqrt{v}\right)+x v^{3 / 2}=0 \\
\Longrightarrow v^{\prime}\left(v^{-3 / 2}+\frac{1}{v}\right)+\frac{1}{x}=0
\end{gathered}
$$

which is a separable equation in v. Thus, we get

$$
-2 v^{-1 / 2}+\ln |v|+\ln x=c
$$

where c is an arbitrary constant. Finally, using $v=y / x$ and the initial condition $y(1)=1$, an implicit expression for the desired solution is obtained as

$$
-2 \sqrt{\frac{x}{y}}+\ln \frac{|y|}{x}+\ln x=-2 .
$$

Problem 3 Consider the first-order differential equation

$$
\left(\sin ^{2} x+4 x y e^{x y^{2}}-x\right) y^{\prime}+2 y \sin x \cos x+2 y^{2} e^{x y^{2}}-y=0 .
$$

(a) Classify the equation, justifying your answer.
(b) Find the general solution of the equation.

SOLUTION:

(a) Let $M(x, y)=2 y \sin x \cos x+2 y^{2} e^{x y^{2}}-y$ and $N(x, y)=\sin ^{2} x+4 x y e^{x y^{2}}-x$. Then, the equation is exact as

$$
\frac{\partial M}{\partial y}=2 \sin x \cos x-1+4 x y^{3} e^{x y^{2}}+4 y e^{x y^{2}}=\frac{\partial N}{\partial x} .
$$

(a) As a consequence, there exists a function $\psi(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \psi}{\partial x}=M(x, y)=2 y \sin x \cos x+2 y^{2} e^{x y^{2}}-y, \tag{3}\\
& \frac{\partial \psi}{\partial y}=N(x, y)=\sin ^{2} x+4 x y e^{x y^{2}}-x \tag{4}
\end{align*}
$$

Now, integration of (3) with respect to x yields $\psi(x, y)=y \sin ^{2} x-x y+2 e^{x y^{2}}+g(y)$, where $g(y)$ is a function to be determined. Then, equating the derivative with respect to y of the previous expression with (4) provides

$$
\frac{\partial \psi}{\partial y}=\sin ^{2} x+4 x y e^{x y^{2}}-x+\frac{d g}{d y}=\sin ^{2} x+4 x y e^{x y^{2}}-x,
$$

hence

$$
\frac{d g}{d y}=0 \quad \Longrightarrow \quad g(y)=\alpha, \quad \alpha \in \mathbb{R} .
$$

Using one of the possible expressions for $g(y)$ obtained for $\alpha=0$, the general solution of the equation can be finally written as

$$
\psi(x, y)=c \quad \Longleftrightarrow \quad y \sin ^{2} x-x y+2 e^{x y^{2}}=c
$$

where c is an arbitrary constant.

Problem 4 Given the Ordinary Differential Equation (ODE):

$$
-5 x^{4}+2 y+x y^{\prime}=0 \quad \text { with } \quad x>0
$$

i) Classify this ODE.
ii) Solve the ODE with initial condition $y(1)=2$.

SOLUTION:

i) First order linear non-homogeneous ODE.
ii) We first find an integrating factor, which is $x: x^{2} y^{\prime}+2 x y=5 x^{5}$. (From $y^{\prime}+2 \frac{y}{x}=5 x^{3}$, we find the integrating factor: $\left.e^{2 \int d x / x}=e^{2 \ln x}=x^{2}\right)$. Then $\left(x^{2} y\right)^{\prime}=5 x^{5}$ and

$$
x^{2} y=\frac{5}{6} x^{6}+c \Longrightarrow 2=\frac{5}{6}+c \Longrightarrow c=\frac{7}{6} .
$$

We get

$$
y(x)=\frac{5}{6} x^{4}+\frac{7}{6 x^{2}}
$$

