vc3m | Universidad Carlos III de Madrid

BY NC SA

Applied Differential Calculus

Self-assessment: Test 3

Authors:

Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin y Rocio Vega

Problem 1 Solve the following system of first-order differential equations

$$
\begin{cases}x_{1}^{\prime}=-4 x_{1}+2 x_{2}, & x_{1}(0)=2 \\ x_{2}^{\prime}=-\frac{5}{2} x_{1}+2 x_{2}, & x_{2}(0)=-3 .\end{cases}
$$

SOLUTION:

The solution of the given system is found by first calculating the eigenvalues and eigenvectors of the coefficients matrix

$$
A=\left[\begin{array}{cc}
-4 & 2 \\
-5 / 2 & 2
\end{array}\right]
$$

which are given by

$$
\begin{array}{ccc}
r_{1}=1 & \Longrightarrow & \boldsymbol{u}_{1}=\binom{2}{5} \\
r_{2}=-3 & \Longrightarrow & \boldsymbol{u}_{2}=\binom{2}{1} .
\end{array}
$$

Since the eigenvalues are real and different, the corresponding eigenvectors are linearly independent, hence the general solution of the system can be written as

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{2}{5} e^{t}+c_{2}\binom{2}{1} e^{-3 t},
$$

where c_{1} and c_{2} are two arbitrary constants. Then, initial conditions yield $c_{1}=-1$ and $c_{2}=2$, hence

$$
\binom{x_{1}(t)}{x_{2}(t)}=-\binom{2}{5} e^{t}+2\binom{2}{1} e^{-3 t} .
$$

Problem 2 (i) Prove that the differential equation $y^{\prime \prime}-6 y^{\prime}+13 y=0$ is equivalent to the following system of first-order differential equations

$$
X^{\prime}=\left[\begin{array}{rr}
0 & 1 \\
-13 & 6
\end{array}\right] X, \quad \text { where } \quad X=X(t)=\binom{x_{1}(t)}{x_{2}(t)} .
$$

(ii) Solve the system in (i) knowing that

$$
X(0)=\binom{2}{2} .
$$

SOLUTION:

(i) Let us apply the following change of variables

$$
y(t)=x_{1}(t), \quad y^{\prime}(t)=x_{2}(t) .
$$

Hence, $x_{1}^{\prime}=y^{\prime}=x_{2}$ and $x_{2}^{\prime}=y^{\prime \prime}=-13 y+6 y^{\prime}=-13 x_{1}+6 x_{2}$. Writing this result in matrix-vector form yields the given system of first-order differential equations.
(ii) In order to solve the system in (i), let us calculate the eigenvalues of the coefficient matrix

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-13 & 6
\end{array}\right],
$$

which are $r_{1}=3+2 i$ and $r_{2}=3-2 i$. The associated eigenvectors are

$$
\vec{v}_{1}=\binom{3-2 i}{13} \quad \text { and } \quad \vec{v}_{2}=\binom{3+2 i}{13}
$$

respectively. Using r_{1} and \vec{v}_{1}, the general solution of the system can be expressed as

$$
X(t)=c_{1} \operatorname{Re}\left\{\binom{3-2 i}{13} e^{(3+2 i) t}\right\}+c_{2} \operatorname{Im}\left\{\binom{3-2 i}{13} e^{(3+2 i) t}\right\},
$$

where c_{1} and c_{2} are two arbitrary constants. Hence

$$
X(t)=e^{3 t}\binom{\left(3 c_{1}-2 c_{2}\right) \cos (2 t)+\left(2 c_{1}+3 c_{2}\right) \sin (2 t)}{13 c_{1} \cos (2 t)+13 c_{2} \sin (2 t)} .
$$

Finally, the initial condition gives $X(0)=\binom{2}{2}=\binom{3 c_{1}-2 c_{2}}{13 c_{1}}$, namely $c_{1}=2 / 13$ and $c_{2}=-10 / 13$. Thus, the desired solution is

$$
X(t)=e^{3 t}\binom{-2 \sin (2 t)+2 \cos (2 t)}{-10 \sin (2 t)+2 \cos (2 t)} .
$$

Problem 3 Given the ODE: $y^{\prime \prime}+2 y^{\prime}-3 y=0$, write it as a system of two first order ODEs, classify the equilibrium point $(0,0)$ and draw its phase portrait, indicating explicitly any real eigendirections that may be relevant.

SOLUTION:

Letting $y=x_{1}, y^{\prime}=x_{2}$, we find $x_{1}^{\prime}=x_{2}$ and $x_{2}^{\prime}=3 x_{1}-2 x_{2}$, i.e.,

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
3 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\underline{\underline{A}}\binom{x_{1}}{x_{2}} .
$$

As $\operatorname{Tr} \underline{\underline{A}}=-2$ and $\operatorname{det} \underline{\underline{A}}=-3$, we find the characteristic polynomial $\lambda^{2}+2 \lambda-3=0$ that produces the eigenvalues $\lambda_{1}=\overline{1}$ and $\lambda_{2}=-3$, one positive and one negative. Thus $(0,0)$ is a saddle point.

The eigenvectors have components satisfying $-v_{1}+v_{2}=0$ for $\lambda_{1}=1$ and $3 v_{1}+v_{2}=0$ for $\lambda_{2}=-3$. These expressions yield $v_{1}=v_{2}=1$ and $v_{1}=1, v_{2}=-3$, respectively. Thus the corresponding eigendirections are $(1,1)$ for $\lambda_{1}=1$ and $(1,-3)$ for $\lambda_{1}=-3$. The phase portrait for the origin is depicted in the figure.

Problem 4 Solve the following system of first order linear ODEs with initial condition $x_{1}(0)=1$, $x_{2}(0)=1$:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1}-3 x_{2} \\
x_{2}^{\prime}=6 x_{1}-4 x_{2}
\end{array}\right.
$$

SOLUTION:

The coefficient matrix has trace -2 and determinant 10. Therefore the characteristic polynomial is $\lambda^{2}+2 \lambda+10=(\lambda+1)^{2}+9$ and thus the eigenvalues are $-1 \pm 3 i$. The components of the eigenvector corresponding to $-1+3 i$ satisfy: $(3-3 i) v_{1}-3 v_{2}=0$, so that $v_{1}=1$ and $v_{2}=1-i$. Then the general solution of the system of ODEs is

$$
\binom{x_{1}}{x_{2}}=R e\left\{e^{-t+i 3 t}(a+i b)\binom{1}{1-i}\right\}=e^{-t} R e\left\{\binom{e^{i 3 t}(a+i b)}{e^{i 3 t}(a+i b)(1-i)}\right\}
$$

Since $(a+i b)(1-i)=a+b+i(b-a)$, we find

$$
\binom{x_{1}}{x_{2}}=e^{-t}\binom{a \cos (3 t)-b \sin (3 t)}{(a+b) \cos (3 t)+(a-b) \sin (3 t)} .
$$

The initial condition produces $1=a$ and $1=a-b$, so $b=0$, and the solution is

$$
\binom{x_{1}}{x_{2}}=e^{-t}\binom{\cos (3 t)}{\cos (3 t)+\sin (3 t)} .
$$

