

CÁLCULO - AUTOEVALUACIÓN 12

Filippo Terragni & Manuel Carretero Cerrajero

Problema 1. Considera la sucesión monótona *creciente* $(a_n)_{n\in\mathbb{N}}$ definida por la siguiente fórmula de recurrencia

$$\begin{split} \alpha_0 &= 1\,,\\ \alpha_n &= \sqrt{\frac{2+3\alpha_{n-1}}{2}}\,,\quad \text{con } n \geq 1\,. \end{split}$$

- (a) Demuestra que la sucesión es acotada.
- (b) Calcula $\lim_{n\to\infty} a_n$.

SOLUCIÓN

Supongamos que la sucesión tiene límite finito, esto es lím $_{n\to\infty}$ $a_n=a\in\mathbb{R}$. Pues, cuando $n\to\infty$ en ambos lados de la fórmula de recurrencia, tenemos que

$$a = \sqrt{\frac{2+3a}{2}} \implies a^2 = \frac{3}{2}a+1 \implies a = -\frac{1}{2}, 2,$$

donde el valor a=-1/2 debemos descartarlo porque la sucesión es creciente y tiene términos positivos. Entonces, a=2 es el único *candidato* a ser el valor del límite.

Demostremos por el *método de inducción* que la sucesión es acotada, esto es $0 \le a_n \le 2$ para todo $n \ge 0$. Primero, dicha propiedad vale para n = 0, pues $0 \le a_0 = 1 \le 2$. Luego, suponiendo que $0 \le a_k \le 2$ para $n = k \ge 0$, obtenemos que (n = k + 1)

$$0\,\leq\,\alpha_{k+1} = \sqrt{\frac{2+3\alpha_k}{2}}\,\leq\,\sqrt{\frac{2+6}{2}}\,=\,2\,.$$

Por tanto, la sucesión es acotada y tiene límite finito cuyo valor es a=2, como calculado anteriormente.

Problema 2. Considera la función

$$f(x) = \begin{cases} \arctan\left(\frac{1}{x^2}\right) + \frac{\pi}{2} & \text{si } x \neq 0, \\ \pi & \text{si } x = 0. \end{cases}$$

- (a) Demuestra que la función f(x) es derivable para todo $x \in \mathbb{R}$.
- (b) Encuentra para que valores de $x \in \mathbb{R}$ la función f(x) es creciente.

SOLUCIÓN

Para $x \neq 0$, f(x) es derivable siendo composición de funciones derivables y tenemos que

$$f'(x) = \frac{-2x}{x^4 + 1},$$

mientras que, si x = 0, obtenemos que

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\arctan\left(\frac{1}{x^2}\right) + \frac{\pi}{2} - \pi}{x} = \lim_{x \to 0} \frac{-2x}{x^4 + 1} = 0,$$

donde la regla de l'Hôpital se ha aplicado en la penúltima igualdad. Así pues, f(x) es derivable en x=0 también. Además, f(x) es creciente para x<0 porque f'(x)>0 en ese caso.

Problema 3. Sea $F(x) = \int_0^{x^3} \ln\left(t^{\frac{1}{3}} + \frac{1}{2}\right) dt$.

- (a) Encuentra y clasifica los extremos *locales* de F(x) para $x \in (0, 1)$.
- (b) Usa el polinomio de Maclaurin de grado 3 asociado a F(x) para estimar F(0,2).

SOLUCIÓN

- (a) Gracias al Teorema Fundamental del Cálculo, tenemos que $F'(x) = 3x^2 \ln \left(x + \frac{1}{2}\right)$. Por tanto, el único punto crítico en el intervalo (0,1) es x = 1/2. Además, la función F(x) es decreciente para x < 1/2 (F'(x) < 0) y creciente para x > 1/2 (F'(x) > 0). Así pues, x = 1/2 es un punto de mínimo local.
- (b) El polinomio de Maclaurin de grado 3 para F(x) es $P_3(x) = ln\left(\frac{1}{2}\right)\,x^3$, por tanto

$$F(0,2) \approx \ln\left(\frac{1}{2}\right) (0,2)^3 \approx -0,0055.$$

Problema 4. Calcula $\int_{e}^{5} \frac{dx}{x \ln(x)}.$

SOLUCIÓN

Aplicando el cambio de variable $\mathfrak{u}=ln(x)$ (d $\mathfrak{u}=dx/x$) tenemos que

$$\int_{e}^{5} \frac{dx}{x \ln(x)} = \int_{1}^{\ln(5)} \frac{du}{u} = \ln(\ln(5)) - 0 = \ln(\ln(5)).$$

Problema 5. Estudia la convergencia de la integral impropia $\int_0^\infty \frac{|\sin(x)|}{x+x^2} dx$.

SOLUCIÓN

La integral converge porque, por ejemplo, podemos escribir

$$\int_0^\infty \frac{|\sin(x)|}{x+x^2} \, dx = \int_0^1 \frac{|\sin(x)|}{x+x^2} \, dx + \int_1^\infty \frac{|\sin(x)|}{x+x^2} \, dx,$$

donde la primera integral de la derecha no es impropia y la segunda integral converge gracias al *criterio de comparación al límite* con $\int_1^\infty 1/x^{3/2}\,dx$.