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FIRST ORDER DIFFERENTIAL
EQUATIONS

We start with a chapter dedicated to the first order differential equations,
the most important resolution methods and their application to the study

of geometrical, physical or social sciences problems.
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§1. First order differential equations

1.1 Introduction

An ordinary differential equation (in short ODE) is a relation of some
derivatives of a function. They appear in many contexts, such as physics,

chemistry, engineering, sociology, and so on.

Example 1.  The free fall of an object is described with the equation:

my’ =mg = y= th + vot + Yo,

where y = y(t) is the height of the object at time ¢, m is the mass and g
is the acceleration of gravity. We obtain the height in terms of the initial

position yo and the initial velocity vg.

In this first example it was enough to integrate twice the ODE we are

given, y’ = g.

Ezxzample 2. Following Newton’s law of cooling, when the differ-
ence of temperatures between a body and the environment is not too big,
the heat that is transferred is proportional to the difference of temperatures.
We have the equation:

T'(t) = —k(T — Ty,

where T' = T'(t) is the temperature at time ¢, k is a positive constant that
describes the heat diffusivity and 7, is the temperature of the environment.

This is a second example of ODE that we will learn how to solve.

Example 3. Malthus’ law of demography establishes that the
growth rate is proportional to the population that exists, P = P(t). Taking
into account the negative effects derived from overcrowding we have to add
a decaying term. We obtain the ODE

P'(t) = aP — bP?.
that is called logistic equation, where a and b are positive constants.

In general, an ordinary differential equation of order n is an expression

of the form:
F('ZE: y(x)v yl(m)7 e 7yn)($)) = 07

for some function F. The order of the equation is that of the highest order
derivative that appears in the expression. Its solution, y = y(z), contains n

arbitrary constants, as many as the order. So, the solution is a family of



Differential Equations

curves, that we call integral curves or simply solutions. The solutions
can be in an implicity form, and in this case we do not obtain an expression
for y(z). To obtain the value of the constants we need data, one for each
constant. Using the data we identify in the family of integral curves the
one that goes through a determined point. The set of the equation together

with the data is called problem, for example:

{ y" +4y =0,
y(0)=0, y(1)=0.

When we have a family of curves, we can obtain the differential equation
of which it is the solution by deriving as many times as constants in the

family and removing the constants.

Example 4. Starting with the family of circumferences with center

at the origin we obtain the ODE
:L'Z-l—yz =? = 242y =0 = y =-=.
Y
In this chapter we concentrate in the study of first order equations, that
is, expressions of the form
F(z,y,y) =0,

and suppose always that we can clear 3 in the previous identity. So the

equations will have the form

y' = fl2,y). (1.1)
Also, it is useful to write this equation in its differential form with the
notation
M (z,y)dx + N(z,y)dy = 0. (1.2)
It is straightforward to change from one notation to the other and we will
use the most appropriate to the case.

Ezxzample 5. The equation of the previous example can be written as

xdx + ydy = 0.

Once we solve the equation, the solution of the problem with the data

may not be unique, but we are sure that in some cases it is:

THEOREM 1.1. (Picard)

0
If f(z,y) and 8_f are continuous on a closed rectangle R C R?, then
Y

through every point of the interior of R there is one and only one integral

curve of the equation
y' = fla,y).
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1.2 Elementary methods

1.2.1 Separate variables equations

These can be written in the form y' = g(z)h(y). They are the simplest and

are solved by separating variables:

and integrating both sides of the equality, each one with respect to the
variable that appears in it. We join the integrating constants in only one
and finally we simplify. If we have the differential form (1.2) we must have
M(x,y) = M(x), N(z,y) = N(y).
Example 6.
3

d
y =ty = —y=:1:2d:(: = log|y\=%+0 — y = Ke
Yy

x3/3

1.2.2 Changes of variables

With the new variable z = A(z,y), the ODE ¢’ = f(x,y) in the variables

(z,y) becomes an ODE in the variables (z, z),

Z’—%_’_%,
ox Oy

The idea is to obtain a new equation that is easier to solve.

Ezample 7.  The equations of the form y' = f(ax + by + ¢) are solved
with the change of variable z = ax 4 by + ¢, that reduces them to separate

variables equations, 2/ = a + bf(z).

1.2.3 Homogeneous equations
We say that a function of two variables f is homogeneous of degree « if
f(A1%4Xy) = Acafﬁf»y)» Vz,y € R, A>0.

An equation v’ = f(z,y) is called homogeneous if f is homogeneous of
degree 0. It can be solved with the change of variable z = g, that reduces

it to an equation with separate variables in the variables (z, z).
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Example 8.
T 1-— dx
y/:T‘F?/’ Z:Z—/ . y'zxz'-l-z — szZ:—T
-y T 142

1
arctg z — 3 log(1 + z2) =loglz|+ K = arctgg =log V2?2 +¢y? + K.
€T

1.2.4 Exact equations

An equation of the form
M(z,y)dz + N(z,y)dy =0

is exact if there exists a function f such that

of
M(z,y) = =L N(z,y) = =~
(@,9) =2, (2,9)
and the expression Mdx+ Ndy is called an exact differential. The function
f is the potential of the vector field F' = (M, N), since it satisfies V[ = F.

PROPOSITION 1.2.

M
A differential equation Mdx + Ndy = 0 is exact if and only if 0 =

dy
ON
——. In this case the general solution is f(x,y) = C, where f is the potential

x
of the vector field (M, N).

This result can be read as: the potential exists if and only if the vector

field is conservative.

(e
Ezxzample 9. eVdr 4 (ze¥ + 2y)dy = 0 is exact because (") =

dy
O(ze¥ + 2y)

= e¥. We look for the solution f(x,y) = C, where:

Oox

T oo = fla.y)= oo + K(y)

Ox y — 2oV !
= we’ + 2y =ze’ + K'(y),

of y

— =uze¥ + 2y

dy

so, K(y) = y?> + c. Finally f(z,y) = xe¥ + y*> + ¢, and the solution is
ze¥ +y2 = C.

Some exact easy-to-recognize exact differentials are:

d(zy) = zdy + ydz, d(z? + y?) = 2(zdz + y dy),

r\  ydr—xdy y\ zdy—ydz
o(5) =t )=
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1.2.5 Integrating factors

A non exact equation of the form Mdx + Ndy = 0 can be multiplied by an
arbitrary non-zero function, u(x,y), leading to the equivalent equation

puMdx + pNdy = 0.

The function g is called integrating factor if this last equation is exact,

that is, if
0 0

55 HN) = a—y(/LM)-

There is no general formula to find an integrating factor, but usually we
seek for the simplest forms (for example, a function of only one variable)
and then we solve the equation. Only one factor is necessary, so when we

find p no integrating constants are needed.

Ezxzample 10. We check that the following equation is not exact and

seek for an integrating factor p = p(x):
ydr + (2%y —2)dy =0 =  p(x)yde + p(z)(2?y — z)dy = 0

that must be exact, then:

0 0

S = St ) = L= -

1
The new equation: %dm + (y — —) dy = 0, is exact, so the solution is
x T
f(x,y) = C, where:

0
TV = jay=-Lrow

Jdr x x N —l——l—l—C’/()
of 1 YT r T T i
Y s

Yy x

Y’ —y ¥
Therefore, C(y) = > + c and the solution is + 5 = K.
T

1.2.6 Linear equations

An equation is linear if the highest order derivative is a linear function of
the lower order derivatives. The canonical form of a linear equation of

first order 1is:
Y + P(x)y = Q(x).
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This can be solved using an integrating factor that depends only on the

variable z, and that turns out to be pu(z) = e/ P@dr,

The general solution has the form:

y — o [ Pl@)dzx [/Q(l’)efp(m)dxdx—l—C] )

3

Example 11. 1y — 4y = 2° is a linear equation of canonical form

y - %y = 22, the solution is (for C' € R):

Yy = ol 3 dz {/ 2202wy 4 C’] =z* [/m_zdm + C] = 23+ Cat.

1.3 Other kinds of equations

1.3.1 Bernoulli equations

These are the equations that can be written in the form:

y +P(r)y=Qx)y",  n#0,L

This can be solved with the change of variable z = y'!~", that transforms

it into a linear equation for z(z).
Ezample 12. 2%y + 2y = 2343 is of Bernoulli type with n = 3:

Y32
2 b

we make the substitution into the equation and simplify:

2 = y_2 :}zl = —2y_3y/ :y/ = —

y3 Z/

2

now we solve as a linear equation and undo the change:
~ ~ . 2 ‘ .
=l Tde [/Qxe_J idwdm-l—C’} = a2 [/Ed:n+ C] = 2*(log(«”) + C)

+1

2
2+ oy =23y = 2 — Sz = 2x;
x

:}y:

1.3.2 Riccati equations

They have the form

y' = A(z) + B(x)y + C(z) y°.



10

§1. First order differential equations

If a particular solution for this equation is known, y;(z), (given by the
problem or obtained by some other method) the general solution can be

written as y = y1 + 2z, where z is the solution of a Bernoulli equation:
Vi +2 = A+ By +2)+ Oy +2)° =
Yy + 2 = A+ By + Bz + Cy? +20y12 + C2? =

2 = (B +2Cy,)z + C22.

1.3.3 Order reduction

There are special second order equations, F(x,y,y,y”) = 0, that can be

solved with first order techniques:

Case 1. If the variable y does not appear: The second order equation
F(z,y',y") = 0 becomes a first order equation with the change of variable

y'(x) = p(x), which implies y”(z) = p/(z), leading to an equation in (x, p),
F(x,p,p) =0.

Case 2. If the variable z does not appear: The second order equation

F(y,vy',y") = 0 becomes a first order equation with the change of variable:

dp dpdy dp
/ _ ~ " - _ 77 .
y'(z) = p(y) y'(z) i dyde Py

leading to an equation in (y, p),
F(y,p.pp') = 0.

These methods can be used also to reduce the order in higher order

equations.

Example 13. In the problem

y' =y,
y(0) =0, ¥'(0) =1,

there is no z; with the change 3y’ = p(y) we obtain:

pp’ = peY,
p(0) = 1.



Differential Equations

11

This equation implies p = 0 or p’ = €Y. The first option does not verify the
data; from the second we have p = ¢¥ + C, where the datum implies C' = 0.

We integrate again, since p = y/(x),
e Vdy=der = —e¥V=x+D.

With the datum y(0) = 0 we obtain that y = —log(1 — z).

1.4 Applications

1.4.1 Orthogonal trajectories

Two families of curves are orthogonal if every intersection of two curves,
one of each family, is orthogonal. The question is, given a family of curves,
how to find the set of the orthogonal trajectories. If the ODE of two

families of curves are

y' = f(xy), ¥ =gxy),

the families are orthogonal if fg = —1. So, the family of orthogonal trajec-
tories to the family with ODE ¢’ = f(z,y) satisfies the equation

, -1
Y =
f(z,y)
Ezxample 14. The differential equation of the family 22 + y? = 2cx is
e o2 — 22
2xy

then the orthogonal trajectories satisfy the equation

; 2wy

that is homogeneous, and has the soluion: z2 + 3% = Ky.

1.4.2 Newton’s law of cooling

We have seen that the ODE that describes the change of temperature of a
body in a medium is
T'(t) = —k(T — Ty,),
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Figure 1.1: The orthogonal families of curves of example 14.

By separating variables and using the initial condition 7'(0) = Tj we obtain:
T(t) = Ty + (T — Tip)e K0

If the inital temperature is less than (respectively greater than) the tempera-
ture of the environment the temperature will increase (respectively decrease)

approaching the temperature of the environment in an asymptotic form.

1.4.3 Radioactive decay

It consists in the transformation of instable atoms (radium, uranium, ce-
sium,...) in other kind of atoms. Approximately, the decay speed of a sub-
stance is proportional to the amount of the existing substance. The ODE

for the rate of disintegrations per minute is
d'(t) = —kd(t).

The method of dating ancient objects is based in determining the rate of
disintegration of certain substances comparing it with the initial disinte-
gration rate, using some radioactive isotopes of slow disintegration. If we
know what is called the half-life o, that is, the necessary time to reduce

the disintegration rate to the half, we obtain:
d(t) = d(0)277,

from this we can compute T' = o logy(d(0)/d(T")) using the initial datum
d(T).
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1.4.4 Population dynamics

Malthus’ law of demography establishes the ODE for the amount of popu-
lation at each time:

P'(t) = aP — bP?,
starting with an initial population of P(0) = FPy. This equation can be

solved separating variables or as a Bernoulli equation. The solution is

o aP()
bRy + (a — bPy)e—at’

P(t)

We find that the population grows if a — bFPy > 0, and decreases otherwise,

and that the long-term equilibrium population is

lim P(t) = %

t—00

These properties can also be obtained directly from the equation, since
P'(t) = 0 implies P(t) = 0 or P(t) = a/b, and that P'(t) > 0 if and
only if a — bP(t) > 0, that is, when P(t) < a/b.

3.0

20f======m=-—m——oooTE====

0.5

0.0

0.2 0.4 0.6 0.8 1.0 12 1.4

Figure 1.2: Population dynamics depending on the initial population.




