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LINEAR EQUATIONS OF
HIGHER ORDER

‘We present here resolution methods for linear differential equations of order
higher than one, including the cases of constant and variable coefficients,
together with some applications.
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§2. Linear equations of higher order

2.1 Second order linear equations

A linear full equation of second order has the general form
y"+ P(2)y + Qz)y = R(x).

P, @ and R are functions of x. We only know how to solve these equations
in some specific cases, but not in general. Here we study the case in which
P and () are constants and some examples with non constant functions, but
there is no general form to solve these last cases. The equation has two
derivatives, so the general solution contains two constants. We say that the

equation is homogeneous if R(z) = 0.

THEOREM 2.1.

If P(z), Q(z) and R(x) are continuous functions on a closed interval

[a,b], xo € [a,b] and yo, y, are numbers, the equation

y" + P(x)y + Q(z)y = R(x)

has one and only one solution y(z) on [a,b] such that
y(xo) =yo,  ¥'(x0) =¥

If the data are given at different points the theorem does not hold any-

more.

Ezxzample 15. The following problem
y'+y=0,
y(0) =0, y(1)=0,
has no solution, while the problem
y' +y=0,
y(0) =0, y(m) =0,

has infinite solutions, y(z) = ksinzx, k € R.

Any homogeneous equation always has the trivial solution, y = 0. Be-

sides:

THEOREM 2.2.

If y1 and y9 are solutions of the homogeneous equation, then also is a
solution:

Yy = C1y1 + Cc2y2, c1,c0 € R.
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The set of solutions of a linear second order ODE is a vectorial space of
dimension 2. Thus, two linearly independent solutions, that is, one is not a

constant times the other, form a basis of this space.

THEOREM 2.3.

If 41 and yo are two linearly independent solutions of the homogeneous

equation
y" + P(x)y + Q(x)y =0,
on the interval [a,b], then the general solution on that interval is
Yn = C1Y1 + Cay2, c1,co € R.
If y, is a particular solution of the non-homogenous equation
y'+ P(x)y + Q(x)y = R(z),
the general solution of this last equation is:

Y =Yp+Yn = Yp +c1y1 + c2y2, c1,02 € R

To determine the linear independence of two functions y1, y2, we use the

wronskian, that is the following determinant:

W(y17 y?) =

Y1 Y

n Z/Q‘

LEMA 2.4.

Two functions are linearly dependent if and only if their wronskian is
zero. Besides, if they are solutions of the homogeneous equation vy + Py’ +
Qy =0, then W = ce= I P for some constant ¢ € R.

If we only know one solution of the homogeneous equation, we can find

another linearly independent by:

LEMA 2.5. (Abel’s formula)

If y; is a solution of y" + Py + Qy = 0, a solution that is linearly

independent of y; is yo = vy1, where

1
_ — [ P(z)dz
v(x) /y%(a:) e dx.
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2.1.1 Homogeneous equations with constant coefficients
The equations we consider now are of the kind
y' +py'+qy=0, pgeR

We seek for solutions of the form y = "™ we substitute and find that r

must be a root of the so named characteristic equation:

_ —pEVPP—4q
5 :

P4prtg=0 = r
There are three cases:

1. Two different real roots. If p>—4¢ > 0, and 71, ry are the roots, the
solutions are y; = €"'%, yo = €% that are independent. The general
solution is:

y(xr) = c1e™7 4 c9e”?”,

2. Two complex conjugated roots. If p?> — 4¢ < 0, The roots are

r1 = a + ib, ro = a — ib and the associated solutions are

e(a+ib)x _ a—ib)x _

e (cos bx + isin bx), el e (cos bxr — isin bx).

In order to obtain real functions we consider instead linear combina-
tions of these solutions that yield the real and imaginary parts:

e(a-i-ib)m + e(a—ib)x e(a—i—ib)m _ e(a—ib)m

e cosbxr = , e“sinbx = -
2 21

These functions are linearly independent solutions. The general solu-
tion is then:

y(x) = e*(cq cos bx + cosin br).

3. One double root. When p? — 4q = 0 we only obtain one solution,
yi1(x) = e P%/2 but a second linearly independent solution is ya(z) =

ze P?/2_ The general solution has the form:
y(x) = (c1 + czx)e_pm/Q.

Exzample 16. In " + 4y + 4y = 0, the characteristic equation is
r2 + 4r + 4 = 0, with double root » = —2, the solution is:

y = (c1 + com)e .
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2.1.2 Method of undetermined coefficients

This method is useful to look for particular solutions of non-homogeneous
equations when the independent term R(z) has a special form: an exponen-
tial, sine or cosine or any of these multiplied by a polynomial.

1. If R(z) = ™, we take y,(z) = Ae® if a is not a root of the character-
istic polynomial (otherwise it would be a solution of the homogeneous
equation). If it is a root, we take y,(z) = Aze®. If this is also a

solution of the homogeneous equation we take then y,(z) = Az?e®”.

2. If R(z) = Kisinbx + Ko cos bz, with K1, Ky constants, we consider
yp(x) = Asinbx + B cos bx
if 4b is not a root of the characteristic polynomial, in that case we take
yp(z) = x(Asinbx + B cos bx).

3. If R(x) is a polynomial of degree n, we take a polynomial of the

same degree n:
yp(x) = Ag + Ay + Aga® + -+ Apa™.

4. If R(x) is an exponential, a sine or a cosine multiplied by a polynomial,
we look for a particular solution of the same form, using the previous

ideas.

5. If R(x) is a sum of functions of the previous types, by linearity we seek
for a particular solution as a sum of functions, following the previous

cases.

Ezample 17. The equation v’ — 3y — 6y = 12z 4+ 20e~2* has the
following roots of the characteristic equation: 1 = 3, ro = —2; so, we seek
for a particular solution os the form y,(z) = Az + B + Cre 2%, and obtain
A= -2, B=1/3, C =—4. The general solution is then

y(x) = 163 + e (g — 4x) — 22+ 1/3.

2.1.3 Method of variation of parameters

Its applicability is wider than in the previous method, it can be used even
when the coefficients of the equation are not constant, or when the indepen-

dent term R(z) is not of the any of the types previously considered.
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PROPOSITION 2.6.

A particular solution of the equation
v+ P(x)y + Q(z)y = R(z)

can be obtained with the expression

Yp(z) = vi(z)y1(x) + va(w)y2(z),

where y; and y, two linearly independent solutions of the associated homo-

geneous equation and the coeflicients are

vi(x) :/%dm va(x) :/%dm,

here W is the wronskian of y; and ys. The resulting particular solution is

yplr) = / i yl(s)ymév_(;;l(m)yﬂs) R(s) ds.

It is not necessary to include the integration constants when we compute

v1 and vo since we only need one of each.

Ezxample 18. The equation vy’ +2y +y = ¢ *logx has r = —1 as the

double root of the characteristic polynomial, this means that y;(z) = e~ %,

yo(x) = we . The wronskian is W(x) = ¢ 2%; and we look for a particular

solution of the form y,(z) = vi(x)e™ + va(z)xe™", where

re Te "logx of1 1.
vl(x)=—/7da:=x <Z—l—§logx>,

—Z —flfl P
vg(x)=/ei_%da:=x(logx—1).

Finally the particular solution we obtain is

(1 3
yp(x) = 2% <§ logx — 71) :

2.2 Linear equations of order n

They have the general form:

y™ + Py(x)y" Y 4 Pula)y = R(x),
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where P, ..., P,, R are functions of z. The equation is homogeneous when
R(z) = 0. Since there are n derivatives, the space of solutions has dimension

n. As with second order equations, the solution is

y(x) = yn(z) + yp(x),

where yy, is the general solution of the homogeneous equation (which contains

n undetermined constants) and y, is a particular solution of the full equation.

2.2.1 Constant coefficients

Let us consider

y(") + aly("_l) + -+ any = R(z), ai,...an € R

The particular solutions of the equation can be found similarly as in
second order. As for the homogeneous equation we look for solutions of
the form y = €' as we did with order two, and obtain the characteristic
equation:

1

™ 4+ar™ -+ a, =0.

1. If there are n different roots: r1,...,r,, the solution is:

yp(z) = 1€ + 2" + -+ - cpe™®.

2. If one root has a higher multiplicity: for example, if | has mul-
tiplicity k, the associated solutions are:

(Cl +coxr+ -+ Ck:L‘k_l)erlx.
We follow the same method with every multiple root.

3. Complex conjugated roots: If they are simple, a + bi yield the
solution:
e (Acosbr + Bsinbx).

If they have multiplicity %, they yield the solution:
e [(A1+ Asx+- -+ ApzF 1) cos br+ (B + Byx+ - - -+ Bjx* )sin ba].

Ezample 19. The equation yY — 2y + 2y — 2y + y = 0, has a
characteristic equation with roots r1 = 1 double, 734 = +i. The general
solution is

y(z) = e"(c1 + cox) + c3cos T + cysin .
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2.2.2 Equidimensional Euler equation
The general form of this kind of equations is:
xny(n) + a1$n—1y(n—1) + a2mn—2y(n—2) + o+ apy =0,

where we observe that all the terms have the same dimension. We look for
solutions of the form y = 2". Remember that if r is a complex number,
r = a =+ bi, we have y = z%(c; cos(blog x) + cosin (blog x)). If some root r is

multiple we seek for solutions of the form y = 2" log x.

Alternative method: The coefficients of the equation become constant
through the change of variable:
{ y(x) = 2(0), : 1 1

PO =tmlege Y@ =20 v@)= 502 0).

In general, the derivative y(™ always has the factor z—".

Example 20. In the equation x3y"” + 222y" + xy’ — y = 0, writing
y = =¥ we obtain k(k — 1)(k — 2) +2k(k — 1) + k — 1 = 0, with roots k = 1,

k = +i. The general solution is
y(x) = c1x + co cos(log ) + e3sin (log x).

With the change of variables the equation becomes 2" — 2" 4+ 2’ — 2 = 0 and
its general solution is i z(t) = c1e! + cocost + e3sint. Undoing the change

we obtain the same solution as before.

2.3 Applications

2.3.1 Electrical circuits

We have a generator, a resistance an alternator and a capacitor in a simple

circuit:

electric charge (coulombs)
electric current (amps) ~ I1=q
electromotive force (volts)

Q &m0
I

resistance (ohms) ~ Er =RI
inductance (henrys) ~ B =LI
~ capacitance (farads) ~ Ec = Q
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Matching the electromotive force produced by the generator with the fall
produced by the other three elements using Kirchoff’s law, we have the
equation

Q

LI'+ RI+ 5 = B

that is equivlent to the second order equations for the charge or the electric

current, known as LRC equations,
1 1
LQ”—i—RQ’—i—EQ:E, LI”—i—RI’—i—EI:E'.

According to the kind of initial data, on the charge or on the current, we

choose one or the other equation.

L R

A

v —c

Figure 2.1: Basic electric circuit.

2.3.2 Mechanical systems

In the study of the forced vibrations of a body joined to a wall by a spring

and with friction we consider:

T ~ displacement

m ~o mass

c ~ friction (force/velocity)

k s spring constant (force/distance)
F ~ external force.

Using Newton’s law together with Hooke’s law and the fact that the
resistance due to friction is proportional to the velocity, we arrive to the
equation

ma” + cx' + kx = F.

The problem is complete when we fix the initial position and the initial

velocity of the mass.

This model is very similar to the previous example, there is even a cor-
respondence between the concepts:

x4+ Q, me L, co R, k<—>%, F& F.
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Figure 2.2: A mass attached to a spring, that slides on a table with friction.
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Figure 2.3: Examples of mechanical systems: oscillating (¢ = 0), under-deadening (c
small), over-deadening (c big).

Depending on the relation between the friction and the constant of the
spring multiplied by the mass, in particular of the sign of ¢ — 4km (or
analogously the resistance respect to L/C' in the circuit) one obtains a system
that is oscillating (¢ = 0), oscillating with deadening (0 < ¢ < 2vkm) or
monotonous with over-deadening (¢ > 2vkm).
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