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METHOD OF SEPARATION OF
VARIABLES

With this chapter we turn into partial differential equations, PDEs. As a

necessary tool we study also Fourier series.
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Differential Equations

4.1 Introduction to partial differential equations

4.1.1 Definitions

A partial differential equation (PDE) is a relation of some partial
derivatives of a several variables function v : RY — R, that is, an expression
of the kind

I

ou  O%u
FZu@), -—, —5—
( ’ ( ) al‘i’ d:claac])
(we are going to study only equations of second order). The solution, if
there is one, may contain arbitrary functions and we need data in order to

obtain them.

Ezxzample 26. For any function f:

0
u=yf(x) solves the equation ya—u = u.
Y

In many examples one of the variables is time and the rest are spatial
variables, u : Q x (0,00) € R**! — R, (N = n + 1 in this case). In
this case we say that it is an evolution equation. The equations that do not
depend on the time are usually called stationary v : Q C R* - R, N =n. A
problem in PDE is an equation together with the data, that can be initial
contidions (IC) if they are data for the time ¢ = 0 in evolution equations,
or boundary conditions (BC), if they are data at the boundary of the
spatial domain 0f). These last conditions can be of different kinds:

1. Dirichlet conditions: We know u at the boundary of the domain:

u = g on Jf2, usually g = 0.

2. Neumann conditions: We know the normal derivative of u, that is
the flux, on 02, usually the flux is zero:

0

M _Fu-i=g on 09,

v

where 7 is the outer normal vector to 9f).

3. Mixed conditions: u and some of its derivatives appear in the same

boundary condition. For example

@—g on Of.

b =
au + o
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84. Separation of variables

The equations that we are going to study are linear, they can be written
as:

Lu = f,
where L is a linear operator, that is, it satisfies:
L(au+ Bv) = aL(u) + SL(v), YV a,B constants.
This means that L(u) is a linear combination of u and its derivatives:
52

n n
0
L=Y a7 (@ .
;az(iv) 8.1?1 +ZJZ:1b 7](1.)811:@8%']

We have a linear problem if the equation and the boundary conditions
are linear. We say that the PDE is homogeneous if f =0, and u = 0 is

always a solution in these equations, it is known as trivial solution.

An equilibrium solution of a problem that depends on the time is a
solution that is independent of the time. We expect usually that this is what
we obtain when we compute the limit of the solution as t — oco.

4.1.2 Fundamental equations

The most important examples of operators in mathematical physics are:

0 0?

L=A, L=——A, L:ﬁ_A’

that give rise, as we are going to see, to the Laplace equation, the heat
equation and the wave equation. The first one is applied to functions w :
R™ — R, that is v = u(&). The other two are applied to functions u :
R™1 — R, that is u = u(#,t), with ¥ € R", ¢t > 0, and are evolution
operators, since as we have said, the variable ¢ usually denotes the time. The
laplacian operator appears in the three equations, this is the differential

operator by excellence:
A=divV =) — =V -V =V? in physics notation) .
iv ; 522 ( in physics notation)

These three operators lead to the fundamental equations in PDE, because
the second order linear equations can be classified according to the coeffi-
cients of second degree and the operator can be simplified into one of these
three. In dimension two, for the equation

0%u 0%u 0%u

+ B—— + C—— = lower order terms

a2
0x? 0xdy Oy?
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there is always a simple change of variables that reduces the operator to
one of them, depending on the sign of the discriminant D = B? — 4AC, the

associated equation receives one of the following three names:

1. Parabolic if D = 0, with prototype the heat equation:

ou
— = Au.
ot
This equation describes the distribution of temperatures u(Z,t) in a
body 2 C R™ along time. the necessary physical data are initial dis-
tribution of temperatures and some boundary condition, for example

zero temperature, or isolation, that can be described by:

zero temperature ~» u =0 on 02 ~-» Dirichlet cond.,
ou

isolation i 0 on df2? ~» Neumann cond.
v

The condition v = 0 at the boundary can be obtained considering as
the origin of temperatures a fixed temperature, that of the medium.
The outer normal derivative to OS2, that is du/dv, is the heat flux
through and outside 0€2; when it is zero there is no heat flux through

the boundary and the body is isolated.

2. Hiperbolic if D > 0, and the prototype is the wave equation:

2
% = Au.
This equation describes the vibration of a string (in a violin, for ex-
ample, in dimension n = 1), a membrane (a drum, in n = 2) or the
propagation of waves in the space (acoustic or electromagnetic waves
in n = 3). The more usual boundary conditions in the first two cases
are Dirichlet conditions, that is, the string or the membrane are fixed
at the boundary. We need two initial data, the initial position and
also the initial velocity, because there is a second order derivative with

respect to the time.
3. Elliptic if D < 0, with prototype the Laplace equation:
Au=0.

This equation describes the stationary distribution of temperatures or
the equilibrium position of a vibrating string or membrane. Also it

appears in many other physical or purely mathematical problems.



40 84. Separation of variables

4.1.3 Simplifications

Linear problems can be simplified very much, so that in many cases it is
only necessary to solve homogeneous problems, or with all but one of the
boundary conditions homogeneous. Consider the problem:

L(u) :f> on D,
) Bi(u) = -
i(u)=g;, only, j=1,...,k

where L is a linear operator, u : D C RV — R (where N can be n or n+1),
and Bj for j = 1,...,k are linear boundary or initial conditions in a part of
the boundary, I'; C 0D. Then:

1. If v solves the equation, then w = u — v solves the new problem:

L(w) =0, on D,
Bj(w):gj—Bj(v), on Fj, j:]_,...,k’.

2. If v satisfies the data, then w = u — v solves the problem:

L(w) = f - L(U)7 on D,
Bj(w) =0, only, j=1,...,k

3. Superposition principle: If uq,uo, ..., uy, m € N, are solutions of

the homogeneous problem:

L(u) =0, on D,
Bj(u) =0, onl, j=1,...k,

then, u = A\jui + - - - + Apum, with \; € R, is also a solution.

4. If ug solves the non homogeneous equation with homogeneous data
and the functions u;, j = 1,...,k, solve the homogeneous equation

with only the j-th datum non homogeneous, respectively:

L(uj) =0, onD,
Bj(uj) = gj, onTj,

{ L(U’O):fv on D,
Bi(uj):0> on Fi7 Z#]v

Bj(’uO)=0, onl“j, j=1,...,k,

then the solution of problem (P) is

u=up+uy+- -+ ug.
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4.2 Method of separation of variables

4.2.1 General procedure

The method consists in looking for solutions in separate variable, that is, as
a product of functions that depend each one on a different variable. In the

heat equation:

ou
A
ot~ "
we look for solutions of the form u(Z,t) = p(&)1(t), and arrive to
7 A
oI =TAp = — = —— = constant,
T ®

because each side depends on a different variable. We denote the constant

by —\ since the sign simplifies future calculations.

We need as many data as derivatives in the equation and also we have
to split the data into conditions for each one of those functions, so we prefer
data with only one non homogeneous datum; if there are more than one we
separate the problem into several problems, using the simplifications of the
previous section, though this is not always possible. However, we can deal

with several non homogenous data if they are initial data.

The spatial problem:

Ap+ Ap =0,
+ boundary conditions,

is an eigenvalue problem, since we can compute the values of A (which
are infinite as we are going to see), that we call eigenvalues and denote by
Ak, and the corresponding functions ¢, that are known as eigenfunctions,

. Once we know the eigenvalues we can solve the time equation,
T'+AT =0 = T(t)=e N,

and obtain a family of solutions in separate variables:

—

up,(Z,) = e Moy ().
By the superposition principle, any linear combination of these functions is
M
also a solution. So, if the initial codition is of the form u(0,t) = Z arpr (),
k=1

the solution has the expression

M
u(Z,t) = Z ape Mo ().
k=1
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The question is then if any function can be written as a linear combination
like that or under what conditions it is true. Let us see what happens in

dimension n = 1.

4.2.2 Heat problem on a rod with zero temperature at finite ends

The problem is described by:

ou 0%u

5 = o O<zxz<L, t>0,

u(0,t) =0, u(L,t) =0, t>0, (Dirichlet BC)
u(z,0) = f(x), 0<z<L. (IC)

We look for product solutions of the form u(z,t) = (x)T'(t) that satisfy
the equation and obtain
(P//
—_— = — = —A7
ET ¢
where A is an arbitrary constant. We also separate the boundary conditions:
w(0,8) = p(O)T() =0 V& = p(0) =0,
W(Lt) = oDTH) =0 ¥ = p(L)=0,

because T'(t) = 0 implies u(x,t) = 0, that is not a valid solution. Then, we
have:
Time equation: 7" = -~ kT = T(t) = e .
Eigenvalue problem:
O+ Xp =0, O<z<L,
{ p(0) =0, ¢(L) = 0.
We are going to see that for some values of A there exists a non trivial

solution. Since the characteristic equation is 72 + X\ = 0 there are three

different cases:

Case 1. A <0 = r = +v/—\, two different real roots, so for ¢y, co arbitrary

constants:

Cle\/—)\x_i_CQe— —)\a:’

5
B
I

p(0)=p(L)=0 = a=c=0 = ¢p)=0.
Case 2. A\ =0 = r =0, double root:

p(z) = a1 + e,
p(0)=p(L)=0 = ca=c=0 = ¢)=0.



Differential Equations

43

Case 3. A >0 = r = +iV/\, pure imaginary roots:
p(x) = ersin (VA z) 4 g cos (V)
p(0)=0 = =0,

p(L)=0 = Clsin(\/XL):():{ =0 = ¢(x)=0,

sin (VAL) = 0.

The last condition implies that v/AL = nm, n =1,2,... This gives us
the eigenvalues and eigenfunctions:

2
/\n=(%) ) gon(a:)=sin?, n=12...

We have found the product solutions:
U (z,t) = Sin?e_k(nﬂ/L)Zt, n=12 ...

Using the superposition principle (linearity), any linear combination will

also be a solution. In fact, if the series
= nwx 2
t) = E_ bpsin —— e knm/L)%t

converges “properly” then it will be also a solution of the heat equation with

zero boundary conditions.

The initial condition is satisfied if we can find the coefficients b, such

that the initial condition can be written in the form

nwT
g bpsin —

This expression is a Fourier sine series and by the work of J. Fourier we
know that almost “any” initial condition f(x) can be written as a series like
that. This is studied in the following section. Let us suppose by now that it
is true. The by, are called Fourier coefficients of f(z) and we can compute

them using the following orthogonality relations:

L

Yie T 0, )

/ sin—ﬂﬂTsin mr dr = m#n n,m € N.
0 L L L/2, m=n,

If we fix m € N, multiply by si
integrate on [0, L], we obtain:

L
f(:v)sin

b L
dl'_Zb / sm@smsz dx:mT.
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Then
m

;rx dx.

L
by = %/0 f(x)sin

Finally, the solution of our heat problem is:

oo L
2 .
u(z,t) = <Z/o f(y)sin% dy) e_k(””/L)ztsin%

n=1

L 2 & NTT . NTY _pinr/L)2
:/0 f(y) 7 sinTsinTe_ (/L) dy

L
_ /0 F)G(z,y,t) dy.

The function G is known as Green’s function of the problem.

This method can also be applied with different boundary conditions: zero
flux or mixed conditions. Also it can be applied in the wave equation and in
Laplace’s equation, even with more variables. The important question is to

solve the eigenvalue problem and characterize the orthogonality relations.

4.3 Fourier series

4.3.1 Introduction

Now we study the series that we have found using the method of separation
of variables. The series of the previous section is a particular case of other
more general series that appear when we solve another PDEs problems. We

start with a definition.

For a function f on the interval [—L, L], its Fourier series is defined
by:

o0 o
nmx nmwx
S(f)(x) =ap+ Gp COS —— + bpsin — |
(D)) =0+ > ancos "7+ 3 bsin ]

where the constants a,,, b, are the Fourier coefficients and are defined by:

1 L
w = o [ @) da.

1 [t nmT
anp = Z/_Lf(:n)cosT dzx,

1 [ . nrTw
by, = Z/_Lf(;v)smT dzx.
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These formulas make sense because the sine and cosine functions satisfy
the following orthogonality relations:

L
/ " 0

/ sin @sin mre dr = m7n n, m>1,
L L L L m=n,

L 0 m#n

nmx mne

/ €08 —— €0 — de=<¢ L m=n>1, n, m > 0,
-+ 2L m=n=0,

L
/ sin@cosmﬂx dx =0, n>1,m>0.
J-r L L

If the Fourier series of a function f exists on [—L, L] that is, if it makes

sense, the coefficients must be well defined, and this is obtained if
L
/ |f(x)|dz < oo.
L

The crucial questions now are if this series converges and if it converges
to the function f. First of all, the Fourier series of f on [—L, L] is periodic
of period 2L but f is not necessarily periodic, so we consider the periodic

extension of f with period 2L, that we usually denote also by f:

fx+2KL) = f(x), VK € Z, Vze(-L,L].

The Fourier series of f can be different from the function and it is not

clear if it is convergent or not, so the notation we use is:
o0 e.¢]
nne . nmT
f(z) ~ap+ E Qp COS —— + E bpsin —— |
L L
n=1 n=1

that means that the right hand side is the Fourier series of f. We have to

define some concepts before we continue:

A function f is piecewise C! or piecewise regular on (—L, L) if the
interval can be divided into subintervals such that f and f’ are both con-
tinues on each open subinterval and the lateral limits exist and are finite
at the endpoints, that is, f and f’ can have jump discontinuities at the

endpoints of the subintervals.

THEOREM 4.1. (Convergence of Fourier series)

If f is piecewise C'! on (—L, L), then the Fourier series of f converges to
the periodic extension of f where the periodic extension is continuous and

to the mean point of the two limits

1

§(f(x+) + f(.%'_)),
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where the periodic extension has a jump, where

f(z™) = lim f(¢), f(z7) = lim f(¢).

t—at t—ax—

Special cases are the Fourier sine series and the Fourier cosine series,

that we study now.

4.3.2 Fourier sine series

The symmetry may simplify the calculations in a Fourier series for some
functions. If a function f is odd (that is, f(—z) = —f(z)) then a,, = 0 for
every n > (), so:

PROPOSITION 4.2.

The Fourier series of an odd function is a sine series:

nwT
g bpsin ——

where the coefficients are:

L
:l/ f(x) smmd /f Sm—d
LJp

When a function f is defined on [0, L] and we need its Fourier sine series
we define the periodic odd extension of f as the function of period 2L
such that:

L
F(IB) — f(ﬂj), x e [07 ]7
_f(_m)a T € (—L,O) )
and the Fourier series on [—L, L] of this odd extension is the Fourier sine
series of f on [0, L].

Example 27. The odd extension of f(z) = z on [0, L] to [-L, L] is

F(z) = x and its Fourier sine series on [0, L] is:

nrtt o opra

2L(— sin
xNZ .

4.3.3 Fourier cosine series

In an even function (f(—z) = f(x)) by the symmetry b, = 0 for every

n > 1, so:
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VAT

Figure 4.1: Sum of the first seven terms of the Fourier sine series of f(z) = z on [—7, ],
compared with the odd periodic extension.

PROPOSITION 4.3.

The Fourier series of an even function is a cosine series:

oo
nmnx

f(x) ~aop+ dn COS ——,

n=1

%/_if(:v)da::%/oj:f(x)d:c

1 r
:—/ f(x) coswda:— /f cos—d:z:.
LJ L

with coefficients:

Given a function f on [0, L], when we need its Fourier cosine series we

define the periodic even extension of f as the function of period 2L such

that:
Flz) = { f@),  wel.r],
f(=2), @& (=L,0),

and the Fourier series of this extension to [—L, L] is the Fourier cosine series
of fon [0, L].

Exzample 28. The even extension of f(z) = z on [0,L] to [-L, L] is

F(z) = |z| and its Fourier cosine series on [0, L] is:

L & (2k + )7z
) ;%Jrl T

In the figures of the Fourier sine and cosine series of the function f(x) = x

on [—m, | we observe that the second converges more quickly.
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- N W A~ O

-10 -5 5 10

Figure 4.2: Sum of the first three terms of the Fourier cosine series of f(z) = z on [—7, 7],
compared with the periodic even extension.

4.3.4 Continuity of Fourier series

As a consequence of the previous definitions and the convergence of the

Fourier series we have:

THEOREM 4.4. (Continuity)

1. General Fourier series: If f is piecewise C' on (—L, L), then its
Fourier series is continuous if and only if f is continuous on [—L, L]

and f(~L) = f(L).

2. Cosine series: If f is piecewise C' on (0, L), then its Fourier cosine

series is continuous if and only if f is continuous on [0, L].

3. Sine series: If f is piecewise C! on (0, L), then its Fourier sine series is

continuous if and only if f is continuous on [0, L] and f(0) = f(L) = 0.

Observe that the series that needs more conditions is the sine series and

the series that requires less conditions is the cosine series.

4.3.5 Other properties of the Fourier series

When we use Fourier series to solve PDEs it is necessary to derive and to
integrate this kind of expressions. Now we study the conditions with which

this can be done.

THEOREM 4.5. (Derivability)

1. General Fourier series: If the Fourier series of f is continuous and
piecewise C', then it can be derived term by term, and the series we
obtain is the Fourier series of f’ (that converges to f’ at the points of

continuity of f').
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2. Fourier cosine series: If f is continuous on [0, L] and piecewise C!
n (0, L), then its Fourier cosine series can be derived term by term,
and the series we obtain is the Fourier sine series of f' (that converges

to f' at the points of continuity of f’).

3. Fourier sine series: If f is continuous on [0, L] and piecewise C' on
(0, L), then its Fourier sine series can be derived term by term if and
only if f(0) = f(L) = 0. In case we can derive term by term, the series
we obtain is the Fourier cosine series of f' (that converges to [’ at the

points of continuity of f’).

Observe that, again, the sine series are more demanding. Nevertheless, if
we have a sine series of a function f that is continuous on [0, L] and piecewise
Clon (0,L),

nwT
g bnsm —

it can be proved that the Fourier cosine series of the derivative is:

1@~ 200 - 10+ 3 (Fon+ 0 - 10) e 7
n=1

and, as can be seen directly, this coincides with the derivative term by term
of the Fourier sine series of f if and only if f(0) = f(L) = 0.

Sometimes we need the derivative with respect to variables that do not

appear in the eigenfunctions, and this is easy:

THEOREM 4.6. (Derivative with respect to a parameter)

If w = wu(x,t) is a continuous function on [—L, L] x [0,00) and du/ot
is piecewise C! as a function of x € (—L, L) for every t € [0,00), then its

Fourier series

u(w, )+ Zan cos Ly Zb )sin @

can be derived term by term with respect to the parameter t, and we obtain

o0
%(x, t) ~ ag(t) + Z ' (t) cosw + Zb’ smw
n=1

With respect to integration we have:
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THEOREM 4.7. (Integration)

If f is piecewise C, then the three Fourier series can be integrated term
by term, and the result is a series that is convergent for all x € [—-L, L] to
the integral of f.

However, it may happen that the series we obtain is not a Fourier series,

as we can see:

If f is piecewise C! on (—L, L) and has a Fourier series on that interval:

o o
f(x) ~ap+ Z @y, COS nzx + Z bpsin n_zx ,

n=1 n=1

term by term integration gives:

x > (a,L . nrx byL nwT
t) dt ~ L " 22 ((=1)" — cos —=
/Lf() ao(x + )+;<nw sin — + (( ) cos — )),

nm

that, as can be seen easily, is a Fourier series if and only if ag = 0.

4.4 More examples of separation of variables

4.4.1 Heat equation on a rod with isolated endpoints

The problem is now

ou 0%u

Dy S L

5 kc‘):c?’ O<z<L, t>0,

ug(0,8) =0, wuy(L,t) =0, t>0, (Neuman BC),
u(x,0) = f(x), 0<z<L, (IC).

We look for solutions in the form u(z,t) = p(x)T'(t). The time equation is
the same as in the previous example on the rod (subsection 4.2.2) and the

eigenvalue problem for x is:

{ (@) +Ap(x) =0 =  px)=¢e" 12+ A=0.
A0 =5(1) =0

The eigenvalues and eigenfunctions are now:

nmH 2 nmwx
Ap = <T) , on(z) =1 cos ——, n=0,1, 2, 3, ...

where @g(z) = 1. Then, using the superposition principle we obtain the
solution:

o0
u(w,t) = Ao + ZA” cos ? o~ (nm/L)*kt,

n=1
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The initial condition implies that

o
nwx
(x)=A Ay cos — .
f(x) o+ Z n €S —
n=1
This is a Fourier cosine series. The orthogonality relations for the eigen-

functions are:

0, n#m
L
/0 cos?cosmzx dr = 57 n=m#0 nmeN.
L, n=m=0

and with them we obtain:
1 [t 2 L N
Ag = Z/o fy)dy,  An= f/o f(y)COSTydy, n=12...
Joining everything we arrive to the representation of the solution by the

Green’s function .
u(a, 1) = /0 F(0)Clay. 1) dy,

where

1 2¢
G(z,y.t) = T+ EZCOS ? o8 % o~ (nm/L)2kt.

n=1

4.4.2 Laplace equation on a disc

On the disc of center (0,0) and radius a we use polar coordinates, u = u(r, )

and the laplacian becomes:

10 ou 1 9%u
A“‘FE(T§)+EW_O’ —r<b<m >0,
u(a, 0) = (0). r >0, (BO).

The interval [—7, 7] is the best option for further calculations.

There are four derivatives and only one condition, so we need three more
conditions. These are known as implicit conditions (that are not given

directly in the problem):

1. Boundedness at the origin (or non singularity): |u(0,0)| < oo.

2. Periodicity conditions:

u(r,—m) = u(r,m), %(r, —m) = Z—Z(r, ).
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Now we look for product solutions u(r,6) = ¢(0)G(r). The periodicity
conditions give rise to two conditions for ¢ and we arrive to the following

eigenvalue problem that is the angular problem:

@'+ Ap =0,
p(=m) = p(7),
@' (=m) = (7).
The eigenvalues are A\, = n?, n = 0,1,2,... and the corresponding eigen-

functions:

sinnf, and cosnd, n=0,1,2,...
For n = 0 observe that there is only one eigenfunction, ¢o(#) = 1. For the
rest of the eigenvalues there are two eigenfunctions associated.
The radial problem has an Euler type equation:

Gn(r)=cir™ +cor ™™, n>0,

r?G" +rG —n’G =0, =
Go(r) = k1 + kalogr, n =0,

|G(0)] < o0,

With the boundedness condition, ¢co = ko = 0. Using the superposition

principle we obtain the solution:

o0
u(r,0) = Ap + Z (Apr™ cosnf + Bprsinnd) .

n=1

If f can be written as a general Fourier series:

[e.9]
u(a,0) = f(0) = Ao + Z (Anpa”™ cosnb + Bpasinnd),
n=1
we can obtain the coeflicients using the orthogonality relations of sines and
cosines of the Fourier series (in the previous section). In our case, L = 7

and the coefficients are:

1 T
Ao = 5 [ 5@ o
21) A = = [ fo)cosno do,
By = — [ f(¢)sinng do.
wa™ J_.

Again we can write the solution using a Green’s function

ur0) = [ 70)G(r,0.6)do,
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where

1
G(r,0,6) = 5—+

1

wa™

o

n—

1

(cos nf cos ng + sin nfsin ng) r".
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