Universidad Carlos III de Madrid

Escuela Politécnica Superior

Departamento de Matemáticas

DIFFERENTIAL EQUATIONS SELFEVALUATION I - SOLUTIONS

24th to 31st of October, 2017
Degree in Biomedical Engineering

Time: 1 hour

The marking is only valid to check the learning pace. It does not compute for the final note.

Problem 1 (2 points)

Solve the equation: $x y^{\prime} \sin \frac{y}{x}=x+y \sin \frac{y}{x}$.
Solution:
It is homogeneous, because y^{\prime} is a homogeneous function of degree zero:

$$
y^{\prime}=\frac{1}{\sin \frac{y}{x}}+\frac{y}{x} .
$$

We make the change: $z=\frac{y}{x}, y^{\prime}=z+x \frac{d z}{d x}$:

$$
z+x \frac{d z}{d x}=\frac{1}{\sin z}+z \quad \Longrightarrow \quad \sin z d z=\frac{d x}{x} \quad \Longrightarrow \quad-\cos z=\log C x
$$

The constant absorbs the sign. Now we undo the change:

$$
\cos \frac{y}{x}=\log \frac{K}{x} \quad \Longrightarrow \quad y=x \arccos \left(\log \frac{K}{x}\right)
$$

Problem 2 (2 points)

Solve, using an integrating factor that depends only on one variable:

$$
y^{2} \cos (x) d x+(4+5 y \sin (x)) d y=0
$$

Solution:
There is not any integrating factor depending on the variable x, so we look for $\mu=\mu(y)$:

$$
\begin{gathered}
\mu(y) y^{2} \cos (x) d x+\mu(y)(4+5 y \sin (x)) d y=0 . \\
\frac{\partial}{\partial y}\left(\mu(y) y^{2} \cos (x)\right)=\frac{\partial}{\partial x}(\mu(y)(4+5 y \sin (x))) \quad \Longrightarrow \cos (x)\left(\mu^{\prime}(y) y^{2}+2 y \mu(y)\right)=5 y \cos (x) \mu(y) \\
\Longrightarrow \frac{3}{y}=\frac{\mu^{\prime}(y)}{\mu(y)} \Longrightarrow \log y^{3}=\log \mu(y) \quad \Longrightarrow \quad \mu(y)=y^{3} .
\end{gathered}
$$

We have now an exact equation:

$$
y^{5} \cos (x) d x+\left(4 y^{3}+5 y^{4} \sin (x)\right) d y=0
$$

the solution is $f(x, y)=K$, where:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=y^{5} \cos (x) \quad \Longrightarrow \quad f(x, y)=y^{5} \sin (x)+C(y) \\
\frac{\partial f}{\partial y}=4 y^{3}+5 y^{4} \sin (x) \quad \Longrightarrow \quad C^{\prime}(y)=4 y^{3} \quad \Longrightarrow \quad C(y)=y^{4}
\end{array} \quad \Longrightarrow \quad y^{5} \sin (x)+y^{4}=K\right.
$$

Problem 3 (2 points)

Solve by reduction of order: $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$.

Solution:

It is not linear. There is no x, so we reduce the order with the change:

$$
y^{\prime}=p(y) \quad \Longrightarrow \quad y^{\prime \prime}=p \frac{d p}{d y}=p p^{\prime}
$$

We obtain the equation:

$$
y p p^{\prime}+p^{2}=0 .
$$

When $p=0$ then $y^{\prime}=0 \quad \Longrightarrow \quad y=C$. When $p \neq 0$:

$$
y p^{\prime}+p=0 \quad \Longrightarrow \quad \frac{d p}{p}=-\frac{d y}{y} \quad \Longrightarrow \quad \log |p|=\log \frac{C_{1}}{|y|} \quad \Longrightarrow \quad p=\frac{C_{1}}{y}
$$

The constant absorbs the two signs. Finally:

$$
p=\frac{d y}{d x}=\frac{C_{1}}{y} \quad \Longrightarrow \quad y d y=C_{1} d x \quad \Longrightarrow \quad \frac{y^{2}}{2}=C_{1} x+C_{2} \quad \Longrightarrow \quad y= \pm \sqrt{K_{1} x+K_{2}} .
$$

Observe that this solution includes $y=C$.

Problem 4 (2 points)

Solve the equation: $x^{3} y^{\prime \prime \prime}+x y^{\prime}-y=3 x^{4}$.
Solution:
This is a nonhomogeneous Euler equation. First we solve the homogeneous part looking for solutions $y=x^{r}$, and obtain:

$$
r(r-1)(r-2)+r-1=0 \quad \Longrightarrow \quad r^{3}-3 r^{2}+3 r-1=0 \quad \Longrightarrow \quad r=1 \text { (triple) } .
$$

We only find one solution, so we use the change of variables $x=e^{t}, \quad t=\log x$:

$$
y_{x}=y_{t} \frac{1}{x}, \quad \Longrightarrow \quad y_{x x}=\frac{1}{x^{2}}\left(y_{t t}-y_{t}\right) \quad \Longrightarrow \quad y_{x x x}=\frac{1}{x^{3}}\left(y_{t t t}-3 y_{t t}+2 y_{t}\right) .
$$

The equation is transformed into another with constant coefficients:

$$
x^{3} \frac{1}{x^{3}}\left(y_{t t t}-3 y_{t t}+2 y_{t}\right)+x \frac{1}{x} y_{t}-y=0 \quad \Longrightarrow \quad y_{t t t}-3 y_{t t}+3 y_{t}-y=0 .
$$

Now we look for solutions $y=e^{K t} \quad \Longrightarrow \quad K=1$ is a root of order three so:

$$
y=e^{t}\left(C_{1}+C_{2} t+C_{2} t^{2}\right) \quad \Longrightarrow \quad y_{h}(x)=x\left(C_{1}+C_{2} \log x+C_{3}(\log x)^{2}\right) .
$$

We try now a particular solution $y_{p}=A x^{4}$ and obtain $y_{p}=\frac{x^{4}}{9}$. Finally:

$$
y(x)=y_{p}+y_{h}=\frac{x^{4}}{9}+x\left(C_{1}+C_{2} \log x+C_{3}(\log x)^{2}\right) .
$$

Problem 5 (2 points)

Use Laplace transform to solve for $\omega \neq \omega_{0}$ the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\omega_{0}^{2} x=k \sin \omega t, \quad t>0 \\
x(0)=x^{\prime}(0)=0
\end{array}\right.
$$

which describes the forced oscillations of a mass on an undamped spring. What happens if $\omega=\omega_{0}$?
Hint: Verify that $L^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right\}=\frac{1}{2 a^{3}}(\sin a t-a t \cos a t)$.

Solution:

We transform by Laplace the equation and obtain:

$$
\left(s^{2}+\omega_{0}^{2}\right) L[x](s)=\frac{k \omega}{s^{2}+\omega^{2}} \quad \Longrightarrow \quad L[x](s)=\frac{k \omega}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+\omega_{0}^{2}\right)}
$$

Now, we decompose:

$$
L[x](s)=\frac{A s+B}{s^{2}+\omega^{2}}+\frac{C s+D}{s^{2}+\omega_{0}^{2}}=\frac{k w}{\omega_{0}^{2}-\omega^{2}}\left\{\frac{1}{s^{2}+\omega^{2}}+\frac{1}{s^{2}+\omega_{0}^{2}}\right\} .
$$

We antitransform and obtain:

$$
x(t)=\frac{k}{\omega_{0}} \cdot \frac{\omega_{0} \sin \omega t-\omega \sin \omega_{0} t}{\omega_{0}^{2}-\omega^{2}} .
$$

If now $\omega=\omega_{0}$, then:

$$
L[x](s)=\frac{k \omega_{0}}{\left(s^{2}+\omega_{0}^{2}\right)^{2}}
$$

and using the hint we have that:

$$
x(t)=\frac{k}{2 \omega_{0}^{2}}\left(\sin \omega_{0} t-\omega_{0} t \cos \omega_{0} t\right)
$$

To prove the hint we can go backwards, using the properties of Laplace transform:

$$
L\left[\frac{1}{2 a^{3}}(\sin a t-a t \cos a t)\right](s)=\frac{1}{2 a^{3}}\left(\frac{a}{s^{2}+a^{2}}+\frac{\partial}{\partial s} \frac{a s}{s^{2}+a^{2}}\right)=\frac{1}{\left(s^{2}+a^{2}\right)^{2}} .
$$

