Universidad Carlos III de Madrid
 Escuela Politécnica Superior

Departamento de Matemáticas

DIFFERENTIAL EQUATIONS

 SELF-EVALUATION II - SOLUTIONS

 SELF-EVALUATION II - SOLUTIONS}

5th to 12th of December, 2017
Degree in Biomedical Engineering.

Time: 90 minutes

The marking is only valid to check the learning pace. It does not compute for the final note.

Problem 1 (4 points)

Solve the Laplace equation over a semicircle:

$$
\Delta u=0, \quad\{0<r<a, 0<\theta<\pi\}
$$

with the boundary conditions:
The diameter is isolated and: $\quad u(a, \theta)=g(\theta)$.
Solution:
The Laplace operator in polar coordinates is:

$$
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

and the conditions are:

$$
u_{\theta}(r, 0)=0, \quad u_{\theta}(r, \pi)=0, \quad u(a, \theta)=g(\theta) .
$$

Note that we must include the boundedness condition at the origin: $|u(0, \theta)|<\infty$.
Next, we separate variables: $u(r, \theta)=\varphi(\theta) G(r)$. Thus, we have to solve on one side the angular problem:

$$
\left\{\begin{array} { l }
{ \varphi ^ { \prime \prime } (\theta) + \lambda \varphi (\theta) = 0 } \\
{ \varphi ^ { \prime } (0) = 0 , \quad \varphi ^ { \prime } (\pi) = 0 }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
\text { eigenvalues } \lambda_{n}=n^{2}, \quad n=0,1,2, \ldots \\
\text { eigenfunctions } \quad \varphi_{n}(\theta)=\cos n \theta
\end{array}\right.\right.
$$

The other one is the radial problem:

$$
\left\{\begin{array} { l }
{ r ^ { 2 } G ^ { \prime \prime } (r) + r G (r) - n ^ { 2 } G (r) = 0 } \\
{ | G (0) | < \infty }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{ll}
G_{n}(r)=C r^{n}, & n \neq 0 \\
G_{0}(r)=C, & n=0
\end{array}\right.\right.
$$

Therefore, the solution to our problem will be:

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty} A_{n}(r)^{n} \cos n \theta
$$

Moreover, thanks to the initial condition and the orthogonality of the eigenfunctions, we arrive at:

$$
u(r, \theta)=\frac{1}{\pi} \int_{0}^{\pi} g(\phi) d \phi+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \frac{2}{\pi}\left(\int_{0}^{\pi} g(\phi) \cos n \phi d \phi\right) \cos n \theta
$$

Problem 2 (2 points)

Use the Rayleigh quotient to obtain a reasonably precise upper bound for the first eigenvalue of the problem:

$$
\varphi^{\prime \prime}+(\lambda-x) \varphi=0, \quad \varphi^{\prime}(0)=2 \varphi(1)+\varphi^{\prime}(1)=0
$$

Solution:

Observe we are dealing with a Sturm-Liouville problem with $p=1, q=-x, \sigma=1$. Due to the minimization principle. we look for functions which satisfy the boundary conditions, for example $\phi(x)=x^{2}-2$ and substitute it into the Rayleigh quotient:

$$
\lambda_{1} \leq \frac{\left[-\phi \phi^{\prime}\right]_{0}^{1}+\int_{0}^{1}\left(\phi^{\prime}\right)^{2}+\int_{0}^{1} x \phi^{2}}{\int_{0}^{1} \phi^{2}}=\frac{135}{106}
$$

Problem 3 (4 points)

Solve the telegraph problem:

$$
\begin{cases}u_{t t}-u_{x x}+a u_{t}+b u=0 & 0<x<L, t>0 \\ u(0, t)=u(L, t)=0 & t>0 \\ u(x, 0)=f(x) & 0<x<L \\ u_{t}(x, 0)=0 & 0<x<L\end{cases}
$$

Solution:

Solving the spatial equation (obtained after applying the separate variables method) we have that

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, \quad X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \quad n \geq 1 .
$$

On the other hand the temporal equation is as follows

$$
T^{\prime \prime}+a T^{\prime}+(b+\lambda) T=0 .
$$

The solution is different depending on the values of λ in relation with a and b. Thus, if

$$
\frac{\pi^{2}}{L^{2}}>\frac{a^{2}}{4}-b, \quad\left(\text { or } \quad \frac{n \pi^{2}}{L^{2}}>\frac{a^{2}}{4}-b, \quad \text { for any } n \geq 1\right)
$$

the solution to our problem will be

$$
u(x, t)=\sum_{n=1}^{\infty} \mathrm{e}^{-a t / 2}\left[A_{n} \sin \left(w_{n} t\right)+B_{n} \cos \left(w_{n} t\right)\right] \sin (n \pi x / L),
$$

where $w_{n}=\sqrt{\frac{n^{2} \pi^{2}}{L^{2}}-\frac{a^{2}}{4}+b}$, and with coefficients

$$
A_{n}=\frac{a B_{n}}{2 w_{n}}, \quad B_{n}=\frac{2}{L} \int_{0}^{L} f(s) \sin (n \pi s / L) d s
$$

Moreover, if there exists $M \in \mathbb{N}$ such that $M-1<\frac{L}{\pi} \sqrt{\frac{a^{2}}{4}-b}<M$, the solution will be

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{M-1} \mathrm{e}^{-a t / 2}\left[C_{n} \sinh \left(z_{n} t\right)+D_{n} \cosh \left(z_{n} t\right)\right] \sin (n \pi x / L) \\
& +\sum_{n=M}^{\infty} \mathrm{e}^{-a t / 2}\left[A_{n} \sin \left(w_{n} t\right)+B_{n} \cos \left(w_{n} t\right)\right] \sin (n \pi x / L)
\end{aligned}
$$

where $z_{n}=\sqrt{\frac{a^{2}}{4}-b-\frac{n^{2} \pi^{2}}{L^{2}}}-$, and the coefficients for n between 1 and $M-1$ are the following

$$
C_{n}=\frac{a D_{n}}{2 z_{n}}, \quad D_{n}=\frac{2}{L} \int_{0}^{L} f(s) \sin (n \pi s / L) d s
$$

Finally, if there exists $M \in \mathbb{N}$ such that $\frac{L}{\pi} \sqrt{\frac{a^{2}}{4}-b}=M$, the solution will be

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{M-1} \mathrm{e}^{-a t / 2}\left[C_{n} \sinh \left(z_{n} t\right)+D_{n} \cosh \left(z_{n} t\right)\right] \sin (n \pi x / L) \\
& +\mathrm{e}^{-a t / 2}\left(E_{M} t+F_{M}\right) \sin (M \pi x / L) \\
& +\sum_{n=M+1}^{\infty} \mathrm{e}^{-a t / 2}\left[A_{n} \sin \left(w_{n} t\right)+B_{n} \cos \left(w_{n} t\right)\right] \sin (n \pi x / L)
\end{aligned}
$$

with the coefficients as follows

$$
E_{M}=\frac{a F_{M}}{2}, \quad F_{M}=\frac{2}{L} \int_{0}^{L} f(s) \sin (M \pi s / L) d s
$$

