Universidad Carlos III de Madrid

Escuela Politécnica Superior

Departamento de Matemáticas

DIFFERENTIAL EQUATIONS
 CONTROL I - SOLUTIONS

7th of November, 2017
Degree in Biomedical Engineering.
Time: 90 minutes

Problem 1 (2.5 points)

Solve the equation:

$$
\left(3 x^{2} y^{2}-y \cos x\right) d x=\left(\sin x-2 x^{3} y\right) d y
$$

Solution:
We rearrange and prove that it is an exact differential equation:

$$
\begin{gathered}
\left(3 x^{2} y^{2}-y \cos x\right) d x+\left(-\sin x+2 x^{3} y\right) d y=0 \\
\frac{\partial}{\partial y}\left(3 x^{2} y^{2}-y \cos x\right)=6 x^{2} y-\cos x=\frac{\partial}{\partial x}\left(-\sin x+2 x^{3} y\right)
\end{gathered}
$$

whose solution is $f(x, y)=K$ where

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=3 x^{2} y^{2}-y \cos x \quad \Longrightarrow \quad f(x, y)=x^{3} y^{2}-y \sin x+C(y) \\
\frac{\partial f}{\partial y}=-\sin x+2 x^{3} y=2 x^{3} y-\sin x+C^{\prime}(y) \quad \Longrightarrow \quad C(y)=c
\end{array}\right.
$$

Solution: $x^{3} y^{2}-y \sin x=K$.

Problem 2 (2.5 points)

Find the solution of:

$$
x^{4} y y^{\prime}+\left(\frac{3}{2} y^{2}+1\right) x^{3}=1 .
$$

Solution:
This is a Bernoulli equation:

$$
y^{\prime}+\frac{3}{2 x} y=\left(\frac{1}{x^{4}}-\frac{1}{x}\right) \frac{1}{y},
$$

with $n=-1$, so we change:

$$
z=y^{1-n}=y^{2} \Longrightarrow z^{\prime}=2 y y^{\prime} \Longrightarrow y^{\prime}=\frac{z^{\prime}}{2 y},
$$

and find the new equation, that is linear:

$$
\frac{z^{\prime}}{2 y}+\frac{3}{2 x} y=\left(\frac{1}{x^{4}}-\frac{1}{x}\right) \frac{1}{y},
$$

$$
z^{\prime}+\frac{3}{x} z=\frac{2}{x^{4}}-\frac{2}{x}
$$

We solve z and undo the change:

$$
\begin{gathered}
z=\mathrm{e}^{-\int \frac{3}{x} d x}\left[\int\left(\frac{2}{x^{4}}-\frac{2}{x}\right) \mathrm{e}^{\int \frac{3}{x} d x} d x+C\right]=\frac{1}{x^{3}}\left[\int\left(\frac{2}{x}-2 x^{2}\right) d x+C\right]=\frac{\log \left(x^{2}\right)+C}{x^{3}}-\frac{2}{3} \\
y= \pm \sqrt{\frac{\log \left(x^{2}\right)+C}{x^{3}}-\frac{2}{3}}
\end{gathered}
$$

Also, the equation can be solved with the integrating factor $\mu(x)=\frac{1}{x}$.

Problem 3 (2.5 points)

Solve the following equation:

$$
x y^{\prime \prime}+3 y^{\prime}+\frac{1}{x} y=4 x^{2} .
$$

Solution:

Multiplying the equation by x we obtain

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=4 x^{3},
$$

which is actually a non-homogenous Euler-type equation. First we solve the homogenous part performing the change of variable:

$$
x=e^{t}, \quad t=\log x \quad \Longrightarrow \quad y_{x}=y_{t} \frac{1}{x}, \quad y_{x x}=\frac{1}{x^{2}}\left(y_{t t}-y_{t}\right) .
$$

We find the new equation:

$$
x^{2} \frac{1}{x^{2}}\left(y_{t t}-y_{t}\right)+3 x y_{t} \frac{1}{x}+y=0 \quad \Longrightarrow \quad y_{t t}+2 y_{t}+y=0 .
$$

The new equation has constant coefficients, so we try $y=\mathrm{e}^{r t}$ as a solution:

$$
y=\mathrm{e}^{r t} \quad \Longrightarrow \quad r^{2}+2 r+1=0 \quad \Longrightarrow \quad r=-1 \quad \text { (double root) }
$$

and hence,

$$
y=\mathrm{e}^{-t}\left(c_{1}+c_{2} t\right) \quad \Longrightarrow \quad y_{h}(x)=\frac{1}{x}\left(c_{1}+c_{2} \log x\right)
$$

Now, we look for a particular solution of the form $y_{p}=A x^{3}$, we calculate

$$
y_{p}^{\prime}=3 A x^{2}, \quad y_{p}^{\prime \prime}=6 A x
$$

and we find

$$
A x^{3}[6+9+1]=4 x^{3} \quad \Longrightarrow \quad A=\frac{4}{16} \quad \Longrightarrow \quad y_{p}=\frac{1}{4} x^{3}
$$

Consequently, the general solution of the original equation will be the following:

$$
y=y_{h}+y_{p}=\frac{1}{x}\left(c_{1}+c_{2} \log x\right)+\frac{1}{4} x^{3} .
$$

Problem 4 (2.5 points)

Solve the problem:

$$
\begin{cases}x^{\prime \prime}-2 x^{\prime}+x=f(t)= \begin{cases}\mathrm{e}^{t}, & 0 \leq t<2 \\ 0, & 2 \leq t \\ x(0)=x^{\prime}(0)=0\end{cases} \end{cases}
$$

Solution:
We use the Laplace transform and first we rewrite the second term using the Heavyside function:

$$
f(t)=\mathrm{e}^{t}-H(t-2) \mathrm{e}^{t}=\mathrm{e}^{t}-H(t-2) \mathrm{e}^{(t-2)} \mathrm{e}^{2}
$$

Applying the Laplace transformation to the differential equation it follows that

$$
s^{2} L[x](s)-2 s L[x](s)+L[x](s)=(s-1)^{2} L[x](s)=\frac{1}{s-1}-\frac{\mathrm{e}^{-2 s} \mathrm{e}^{2}}{s-1}
$$

Now we antitransform:

$$
\begin{gathered}
L[x](s)=\frac{1}{(s-1)^{3}}-\frac{\mathrm{e}^{-2 s} \mathrm{e}^{2}}{(s-1)^{3}} \\
\Longrightarrow x(t)=\frac{t^{2} \mathrm{e}^{t}}{2}-H(t-2) \frac{\mathrm{e}^{2}(t-2)^{2} \mathrm{e}^{t-2}}{2}= \begin{cases}\frac{t^{2} \mathrm{e}^{t}}{2}, & 0<t<2 \\
\mathrm{e}^{t}(2 t-2), & 2 \leq t\end{cases}
\end{gathered}
$$

