Universidad Carlos III de Madrid

Escuela Politécnica Superior

Departamento de Matemáticas

DIFFERENTIAL EQUATIONS
CONTROL 2 - SOLUTIONS
18th of December 2017
Degrees in Biomedical Engineering.

Time: 3 hours

Problem 1 (4 points)
Solve the following problem on a rectangle:

$$
\begin{cases}u_{x x}+4 u_{y y}=0, & 0<x<\pi / 2, \quad 0<y<\pi, \\ u(0, y)=u(\pi / 2, y)=0, & 0<y<\pi, \\ u(x, \pi)=0, & 0<x<\pi / 2, \\ u(x, 0)=2 \sin 6 x, & 0<x<\pi / 2\end{cases}
$$

Solution:
We look for solutions of the form: $u(x, y)=\Phi(x) G(y)$:

$$
\Phi^{\prime \prime}(x) G(y)+4 \Phi(x) G^{\prime \prime}(y)=0 \quad \Longrightarrow \quad \frac{\Phi^{\prime \prime}(x)}{\Phi(x)}=-\frac{4 G^{\prime \prime}(y)}{G(y)}=-\lambda
$$

The eigenvalue problem is:

$$
\left\{\begin{array}{l}
\Phi^{\prime \prime}(x)+\lambda \Phi(x)=0 \quad \Longrightarrow \quad G(x)=e^{r x}, \quad r^{2}+\lambda=0 \quad \Longrightarrow \quad r= \pm \sqrt{-\lambda}, \\
\Phi(0)=\Phi\left(\frac{\pi}{2}\right)=0,
\end{array}\right.
$$

Case $\lambda>0: r= \pm i \sqrt{\lambda} \quad \Longrightarrow \quad \Phi(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$.

$$
\Phi(0)=c_{1}=0, \quad \Phi\left(\frac{\pi}{2}\right)=c_{2} \sin \left(\sqrt{\lambda} \frac{\pi}{2}\right)=0 \quad \Longrightarrow \quad \sqrt{\lambda} \frac{\pi}{2}=n \pi \quad \Longrightarrow \quad \lambda=4 n^{2}, n=1,2, \ldots
$$

These eigenvalues correspond to the eigenfunctions: $\Phi_{n}(x)=\sin (2 n x)$, with $n=1,2, \ldots$.
Case $\lambda=0: r=0 \quad \Longrightarrow \quad G(x)=c_{1}+c_{2} x$.

$$
\Phi(0)=c_{1}=0, \quad \Phi\left(\frac{\pi}{2}\right)=c_{1}+c_{2} \frac{\pi}{2}=c_{2} \frac{\pi}{2}=0 \quad \Longrightarrow \quad c_{2}=0 .
$$

So this is not an eigenvalue.
Case $\lambda<0: r= \pm \sqrt{\lambda} \Longrightarrow \Phi(x)=c_{1} \cosh (\sqrt{-\lambda} x)+c_{2} \sinh (\sqrt{-\lambda} x)$.

$$
\Phi(0)=c_{1}=0, \quad \Phi\left(\frac{\pi}{2}\right)=c_{2} \sinh \left(\sqrt{-\lambda} \frac{\pi}{2}\right)=0 \quad \Longrightarrow \quad c_{2}=0 .
$$

It is not an eigenvalue either.
Problem for y (now $\lambda=4 n^{2}$):

$$
\left\{\begin{array}{l}
4 G^{\prime \prime}(y)-4 n^{2} G(x)=0 \quad \Longrightarrow \quad G(x)=e^{r y}, \quad 4 r^{2}-4 n^{2}=0 \quad \Longrightarrow \quad r= \pm n, \\
G(\pi)=0,
\end{array}\right.
$$

We can write $G_{n}(y)=c_{1} e^{n y}+c_{2} e^{-n y}$, but it is simpler to use:

$$
G_{n}(y)=c_{1} \cosh (n(y-\pi))+c_{2} \sinh (n(y-\pi))
$$

Since $G_{n}(\pi)=c_{1}=0 \quad \Longrightarrow \quad G_{n}(y)=c_{2} \sinh (n(y-\pi))$.
Now we obtain the product solution and also apply the superposition principle:

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin (2 n x) \sinh (n(y-\pi)),
$$

With the boundary condition at $y=0$ we obtain the coefficients:

$$
\begin{aligned}
& u(x, 0)=2 \sin (6 x)=\sum_{n=1}^{\infty} B_{n} \sin (2 n x) \sinh (-n \pi) \\
& \Longrightarrow B_{n}=0, \quad n \neq 3, \quad B_{3}=\frac{-2}{\sinh (3 \pi)}
\end{aligned}
$$

Solution:

$$
u(x, y)=\frac{-2}{\sinh (3 \pi)} \sin (6 x) \sinh (3(y-\pi))
$$

Problem 2 ($1+2$ points)

Consider the Laplace problem in a disc with radius 3:

$$
\left\{\begin{array}{l}
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0, \quad 0<r<3 \\
u(3, \theta)=f(\theta)
\end{array}\right.
$$

a) Apply the method of separate variables and find the one variable problems.
b) Solve those problems (ODE's).

Solution:

a) First we must add the conditions of periodicity and boundedness at the origin:

$$
u(r, \pi)=u(r,-\pi), \quad u_{\theta}(r, \pi)=u_{\theta}(r,-\pi), \quad|u(0, \theta)|<\infty
$$

Applying the method of separation of variables

$$
u(r, \theta)=\phi(\theta) G(r)
$$

we obtain the problems:

$$
\left\{\begin{array} { l }
{ \phi ^ { \prime \prime } (\theta) + \lambda \varphi (\theta) = 0 , } \\
{ \phi (\pi) = \phi (- \pi) . } \\
{ \phi ^ { \prime } (- \pi) = \phi ^ { \prime } (- \pi) . }
\end{array} \quad \left\{\begin{array}{l}
r^{2} G^{\prime \prime}(r)+r G(r)-\lambda G=0, \\
|G(0)|<\infty .
\end{array}\right.\right.
$$

b) The angular problem provides us with a family of eigenvalues and eigenfunctions:

$$
\begin{array}{lll}
\lambda_{0}=0, & & \phi_{0}=1, \\
\lambda_{n}=n^{2}, & n=1,2, \ldots & \phi_{n}=C_{1} \cos (n \theta)+C_{2} \sin (n \theta) .
\end{array}
$$

Now, we solve the radial problem, which is an Euler equation. Substituting $\lambda=n^{2}$ into the radial equation and separating the cases $n=0$ and $n \neq 0$, we find that, after applying the boundedness condition at the origin,

$$
\left\{\begin{array}{lll}
n=0: & r^{2} G^{\prime \prime}(r)+r G^{\prime}(r)=0 & \Longrightarrow G(r)=C_{1}+C_{2} \log r \\
n \neq 0: & r^{2} G^{\prime \prime}(r)+r G^{\prime}(r)-n^{2} G(r)=0 & \Longrightarrow G(r)=C_{1} r^{n}+C_{2} r^{-n}
\end{array} \Longrightarrow G_{n}(r)=C_{1} . ~ . ~(r)=C_{1} r^{n} .\right.
$$

Problem 3 (1,5 $+1,5$ points)

Consider the problem:

$$
\left\{\begin{array}{l}
\varphi^{\prime \prime}+2 \varphi^{\prime}+(\lambda-x) \varphi=0, \quad 0<x<1, \\
\varphi^{\prime}(0)=\varphi(1)=0 .
\end{array}\right.
$$

a) Write it in form of a Sturm-Liuville problem using an integrating factor.
b) Study if all the eigenvalues are positive and if there is a zero eigenvalue.

Solution:
a) We multiply by a factor $H(x)$, we want to obtain the form of a Sturm-Liouville problem

$$
H\left(\varphi^{\prime \prime}+2 \varphi^{\prime}+(\lambda-x) \varphi\right)=\left(p \varphi^{\prime}\right)^{\prime}+q \varphi+\lambda \sigma \varphi .
$$

Then we must have

$$
p=H, \quad p^{\prime}=2 H, \quad q=-x H, \quad \sigma=H .
$$

So, we deduce that:

$$
p^{\prime} / p=2, \Longrightarrow p=H=e^{2 x} .
$$

The new equation is

$$
\left(e^{2 x} \varphi^{\prime}\right)^{\prime}-x e^{2 x} \varphi+\lambda e^{2 x} \varphi=0 .
$$

b) One can obtain the Rayleigh quotient with this steps: we multiply the equation by φ, then integrate on $(0,1)$:

$$
\int_{0}^{1}\left(e^{2 x} \varphi^{\prime}(x)\right)^{\prime} \varphi(x) d x-\int_{0}^{1} x e^{2 x} \varphi^{2}(x) d x+\lambda \int_{0}^{1} e^{2 x} \varphi^{2}(x) d x=0
$$

and finally we clear λ and integrate by parts the first integral, making the substitution of the boundary conditions,

$$
\begin{gathered}
\lambda=\frac{\left[-e^{2 x} \varphi(x) \varphi^{\prime}(x)\right]_{0}^{1}+\int_{0}^{1} e^{2 x}\left(\varphi^{\prime}(x)\right)^{2} d x+\int_{0}^{1} x e^{2 x} \varphi^{2}(x) d x}{\int_{0}^{1} e^{2 x} \varphi^{2}(x) d x} \\
=\frac{\int_{0}^{1} e^{2 x}\left(\varphi^{\prime}(x)\right)^{2} d x+\int_{0}^{1} x e^{2 x} \varphi^{2}(x) d x}{\int_{0}^{1} e^{2 x} \varphi^{2}(x) d x}
\end{gathered}
$$

Everything is greater or equal to zero, and the denominator is never zero, so $\lambda \geq 0$. Also, if $\lambda=0$ then all the terms in the numerator must be zero, in particular

$$
\int_{0}^{1} x e^{2 x} \varphi^{2}(x) d x \Rightarrow \varphi \equiv 0
$$

so $\lambda=0$ is not an eigenvalue and all the eigenvalues are strictly positive: $\lambda>0$.

