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Problem 1 (4 points)
Solve the following problem on a rectangle:

Uz + 4y = 0, O<z<m/2, O0<y<m,
u(0,y) =u(n/2,y) =0, 0<y<m,

u(x,m) =0, 0<z<m/2,

u(z,0) = 2sin 6z, O<zx<m/2.

SOLUTION:
We look for solutions of the form: u(z,y) = ®(z)G(y):

d"(2)G(y) +4®(2)G"(y) =0 = = =-\.

The eigenvalue problem is:

{ " (z) + AD()
®(0) = 9(Z) =

=0 = G@) =€ r+A=0 = r==+/-),
0,

Case A >0:7r==+ivVA = &(z)=cicos(vVz)+ casin(v/Ax).

B(0) =¢; =0, @(g):cgsm(ﬁg)zo = )\g:mr — A=dn® n=12,...

These eigenvalues correspond to the eigenfunctions: ®,(z) = sin(2nz), with n =1,2,....

Case \=0:7=0 = G(z)=c1+ .

®(0) =1 =0, @(g)201+02g202g:0 — ¢, =0.

So this is not an eigenvalue.
Case A\<0:7r=+VA = &(x)=c;cosh(v—Az) + czsinh(v—\z).
D(0) =1 =0, B(F)=cosith(V=AZ)=0 = e =0.

It is not an eigenvalue either.
Problem for y (now A = 4n?):

4G"(y) —4n’G(z) =0 = G)=¢€", 4?—4dn’=0 = r=4n,
G(m) =0,

We can write G, (y) = c1e™ 4 coe™ ™, but it is simpler to use:

Gy (y) = c1 cosh <n(y — 7'(')) + cg sinh <n(y - 7'('))



Since Gp(m) =c1 =0 = Gyp(y) = casinh (n(y - ﬂ'))
Now we obtain the product solution and also apply the superposition principle:

(0.9}
u(z,y) = Z By, sin(2nz) sinh (n(y - 7r)) ,
n=1
With the boundary condition at y = 0 we obtain the coefficients:

u(x,0) = 2sin(6x) = io: By, sin(2nx) sinh(—nm)

n=1
—2
n=0 n#3, B sinh(37)

Solution:

u(@,y) = sinh(3)

sin(6x) sinh (3(y - 7[')) .

Problem 2 (1 4 2 points)
Consider the Laplace problem in a disc with radius 3:

10 ou 1 0%u
A —_— _——_— =
Y rar <r8r>+7'2892 0, O<r<s

u(3,0) = f(60).
a) Apply the method of separate variables and find the one variable problems.
b) Solve those problems (ODE’s).

SOLUTION:
a) First we must add the conditions of periodicity and boundedness at the origin:
u(r,m) = u(r, —m), ug(r,m) = ug(r, —m), |u(0,0)| < co.
Applying the method of separation of variables
u(r,0) = ¢(0)G(r),

we obtain the problems:

j('()) gj( (Wg { P2G"(r) + rG(r) — AG = 0,
#(=m) = /(). GO e
b) The angular problem provides us with a family of eigenvalues and eigenfunctions:
Ao =0, ¢o =1,
A = n?, n=12... ¢n = Cy cos(nb) + Cysin(nb) .

Now, we solve the radial problem, which is an Euler equation. Substituting A = n? into
the radial equation and separating the cases n = 0 and n # 0, we find that, after applying
the boundedness condition at the origin,

n=0: r’G"(r)+rG'(r)=0 = G(r) =01+ Celogr = Go(r)=0C1.
n#0: r2G"(r)+rG'(r) —=n?G(r)=0 = G(r)=Cr"+Cor™ = Gu(r)=Cyr".



Problem 3 (1,5 + 1,5 points)
Consider the problem:

{cp”+2<p’—|—()\—:r)<p:0, 0<x<l,
¢'(0) = ¢(1) = 0.

a) Write it in form of a Sturm-Liuville problem using an integrating factor.

b) Study if all the eigenvalues are positive and if there is a zero eigenvalue.

SOLUTION:
a) We multiply by a factor H(x), we want to obtain the form of a Sturm-Liouville problem

H(¢" 4+ 2¢" + (A —x)p) = (p¢) + g + Aoep.

Then we must have
p=H, p =2H, q=-—xzH, o=H.

So, we deduce that:
p/p=2 = p=H = e,

The new equation is
(eQx /)/ _ l’€2x(,0—|— )\621:@ =0.

b) One can obtain the Rayleigh quotient with this steps: we multiply the equation by ¢, then
integrate on (0, 1):

1 1 1
e2 o/ (2)) o(x) dz — xe?® % (x) dx 2o (z) dx =
| @@y [ apaoen [ @@

and finally we clear A and integrate by parts the first integral, making the substitution of the
boundary conditions,

1 1
[—621(,0(.%)(,0,(56)]54-/0 62”5(<p'(x))2dx+/0 ze®®p?(z) dx

1
/ > *(x) dx
0

1 1
/ e2x(ap’(x))2dm+/ re* % (x) dx
0 0
1
/ e* % (z) dx
0

Everything is greater or equal to zero, and the denominator is never zero, so A > 0. Also, if
A = 0 then all the terms in the numerator must be zero, in particular

1
/ re** o (x)dr = ¢ =0,
0

so A = 0 is not an eigenvalue and all the eigenvalues are strictly positive: A > 0.




