Universidad Carlos III de Madrid

Escuela Politécnica Superior

Departamento de Matemáticas

DIFFERENTIAL EQUATIONS
 CONTROL 2

18th of December 2017
Degrees in Biomedical Engineering.
Time: 3 hours
Problem 1 (4 points)
Solve the following problem on a rectangle:

$$
\begin{cases}u_{x x}+4 u_{y y}=0, & 0<x<\pi / 2, \quad 0<y<\pi \\ u(0, y)=u(\pi / 2, y)=0, & 0<y<\pi \\ u(x, \pi)=0, & 0<x<\pi / 2 \\ u(x, 0)=2 \sin 6 x, & 0<x<\pi / 2\end{cases}
$$

Problem 2 ($1+2$ points)
Consider the Laplace problem in a disc with radius 3:

$$
\left\{\begin{array}{l}
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0, \quad 0<r<3, \\
u(3, \theta)=f(\theta) .
\end{array}\right.
$$

a) Apply the method of separate variables and find the one variable problems.
b) Solve those problems (ODE's).

Problem 3 (1,5 + 1,5 points)

Consider the problem:

$$
\left\{\begin{array}{l}
\varphi^{\prime \prime}+2 \varphi^{\prime}+(\lambda-x) \varphi=0, \quad 0<x<1, \\
\varphi^{\prime}(0)=\varphi(1)=0 .
\end{array}\right.
$$

a) Write it in form of a Sturm-Liuville problem using an integrating factor.
b) Study if all the eigenvalues are positive and if there is a zero eigenvalue.

