uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL EQUATIONS
 EXTRAORDINARY EXAM - SOLUTIONS

18th of June, 2018
Degree in Biomedical Engineering.
Time: 3 hours
Problem 1 (1.5 points)
Solve the equation $\quad 3 x y^{2} y^{\prime}+y^{3}=x \sin x$.
Solution:
We divide by $3 x y^{2}$ and obtain a Bernouilli equation with $n=-2$:

$$
y^{\prime}+\frac{y}{3 x}=\frac{\sin x}{3} y^{-2},
$$

Now we change $z=y^{1-n}=y^{3} \Longrightarrow z^{\prime}=3 y^{2} y^{\prime} \Longrightarrow y^{\prime}=\frac{z^{\prime}}{3 y^{2}}$ and obtain a linear equation:

$$
\frac{z^{\prime}}{3 y^{2}}+\frac{y}{3 x}=\frac{\sin x}{3} y^{-2} \Longrightarrow z^{\prime}+\frac{z}{x}=\sin x .
$$

Applying the formula for the solution we arrive to:

$$
\begin{aligned}
z & =e^{-\int \frac{d x}{x}}\left[\int \sin x e^{\int \frac{d x}{x}} d x+C\right]=\frac{1}{x}\left[\int x \sin x d x+C\right] \\
& =\frac{1}{x}\left[-x \cos x+\int \cos x d x+C\right]=-\cos x+\frac{\sin x+C}{x}
\end{aligned}
$$

and finally:

$$
y=z^{1 / 3}=\sqrt[3]{-\cos x+\frac{\sin x+K}{x}} .
$$

Problem 2 (2 points)

Solve the equation $\quad x y^{\prime \prime}+3 y^{\prime}+\frac{1}{x} y=x^{2}$.
Solution:
Multiplying by x we have $x^{2} y^{\prime \prime}+3 x y^{\prime}+y=x^{3}$, that is a non-homogeneous Euler type equation. We solve first the homogeneous part, with the change:

$$
x=\mathrm{e}^{t}, \quad t=\log x \quad \Longrightarrow \quad y_{x}=y_{t} \frac{1}{x}, \quad y_{x x}=\frac{1}{x^{2}}\left(y_{t t}-y_{t}\right) .
$$

The new equation is:

$$
x^{2} \frac{1}{x^{2}}\left(y_{t t}-y_{t}\right)+3 x y_{t} \frac{1}{x}+y=0 \quad \Longrightarrow \quad y_{t t}+2 y_{t}+y=0 .
$$

Making $y=\mathrm{e}^{r t} \quad \Longrightarrow \quad r^{2}+2 r+1=0 \quad \Longrightarrow \quad r=-1$ double root, so:

$$
y=\mathrm{e}^{-t}\left(c_{1}+c_{2} t\right) \quad \Longrightarrow \quad y_{h}(x)=\frac{1}{x}\left(c_{1}+c_{2} \log x\right)
$$

Finally we look for $y_{p}=A x^{3} \quad \Longrightarrow \quad y_{p}^{\prime}=3 A x^{2}, \quad y_{p}^{\prime \prime}=6 A x$:

$$
A x^{3}[6+9+1]=x^{3} \quad \Longrightarrow \quad A=\frac{1}{16} \quad \Longrightarrow \quad y_{p}=\frac{1}{16} x^{3} .
$$

The whole solution is:

$$
y=y_{h}+y_{p}=\frac{1}{x}\left(c_{1}+c_{2} \log x\right)+\frac{1}{16} x^{3} .
$$

Problem 3 (2 points)

Solve the initial value problem

$$
\left\{\begin{array}{ll}
y^{\prime \prime}+2 y^{\prime}+2 y=g(t), \\
y(0)=1, & y^{\prime}(0)=0,
\end{array} \quad g(t)= \begin{cases}3, & 0<t<2 \pi \\
0, & 2 \pi \leq t<5 \pi \\
1, & 5 \pi \leq t\end{cases}\right.
$$

Solution:

We write $g(t)$ in terms of a Heaviside function and transform by Laplace the equation:

$$
\begin{aligned}
& g(t)=3+H(t-2 \pi)(-3)+H(t-5 \pi) \\
& \left(s^{2}+2 s+2\right) L[y](s)-s-2=\frac{3}{s}-\frac{3 e^{-2 \pi s}}{s}+\frac{e^{-5 \pi s}}{s} \\
& L[y](s)=\frac{3+s^{2}+2 s}{s\left(s^{2}+2 s+2\right)}+\frac{-3 \mathrm{e}^{-2 \pi s}+\mathrm{e}^{-5 \pi s}}{s\left(s^{2}+2 s+2\right)} .
\end{aligned}
$$

Now we write this in simple fractions so that we can antitransform:

$$
\begin{aligned}
& \frac{3+s^{2}+2 s}{s\left(s^{2}+2 s+2\right)}=\frac{3 / 2}{s}-\frac{1}{2} \frac{(s+1)+1}{(s+1)^{2}+1}=L\left[\frac{3}{2}-\frac{\mathrm{e}^{-t}}{2}(\cos t+\sin t)\right](s), \\
& \frac{1}{s\left(s^{2}+2 s+2\right)}=\frac{s}{2}-\frac{\frac{1}{2}(s+1)+\frac{1}{2}}{(s+1)^{2}+1}=L\left[\frac{1}{2}-\frac{\mathrm{e}^{-t}}{2}(\cos t+\sin t)\right](s) .
\end{aligned}
$$

The solution is:

$$
\begin{aligned}
y(t)= & \frac{3}{2}-\frac{\mathrm{e}^{-t}}{2}(\cos t+\sin t)-\frac{3}{2} H(t-2 \pi)\left(1-\mathrm{e}^{-(t-2 \pi)}(\cos (t-2 \pi)+\sin (t-2 \pi))\right) \\
& +\frac{1}{2} H(t-5 \pi)\left(1-\mathrm{e}^{-(t-5 \pi)}(\cos (t-5 \pi)+\sin (t-5 \pi))\right) \\
= & \frac{3}{2}-\frac{\mathrm{e}^{-t}}{2}(\cos t+\sin t)-\frac{3}{2} H(t-2 \pi)\left(1-\mathrm{e}^{-(t-2 \pi)}(\cos t+\sin t)\right) \\
& +\frac{1}{2} H(t-5 \pi)\left(1-\mathrm{e}^{-(t-5 \pi)}(-\cos t-\sin t)\right) .
\end{aligned}
$$

Problem $4(0.5+1+1=2.5$ points $)$
a) Split into two one-variable problems

$$
\begin{cases}u_{t}-2 u_{x x}=2 u, & -\frac{\pi}{2}<x<\frac{\pi}{2}, \quad t>0, \\ u(-\pi / 2, t)=u(\pi / 2, t), & t>0, \\ u_{x}(-\pi / 2, t)=u_{x}(\pi / 2, t), & t>0, \\ u(x, 0)=8-3 \sin (2 x)-8 \cos ^{2}(2 x), & -\frac{\pi}{2}<x<\frac{\pi}{2} .\end{cases}
$$

b) Solve both problems.
c) Find the solution of the original problem.

Solution:

a) We separate $u(x, t)=\phi(x) G(t)$ and obtain the problems:

$$
\left\{\begin{array} { l }
{ \phi ^ { \prime \prime } (x) + \lambda \phi (x) = 0 , } \\
{ \phi (- \pi / 2) = \phi (\pi / 2) , } \\
{ \phi ^ { \prime } (- \pi / 2) = \phi ^ { \prime } (\pi / 2) , }
\end{array} \quad \left\{G^{\prime}(t)=2(1-\lambda) G(t) .\right.\right.
$$

b) With the boundary conditions we know that (or we calculate them):

$$
\lambda_{n}=\left(\frac{n \pi}{\pi / 2}\right)^{2}=4 n^{2}, \quad n=0,1,2, \ldots \quad \phi_{n}(x)=c_{1} \cos (2 n x)+c_{2} \sin (2 n x)
$$

Then

$$
G^{\prime}(t)=2\left(1-4 n^{2}\right) G(t) \quad \Longrightarrow \quad G(t)=K e^{2\left(1-4 n^{2}\right) t} .
$$

c) The product solution, using the superposition principle, is:

$$
u(x, t)=A_{0} \mathrm{e}^{2 t}+\sum_{n=1}^{\infty} \mathrm{e}^{\left(2-8 n^{2}\right) t}\left(A_{n} \cos (2 n x)+B_{n} \sin (2 n x)\right)
$$

The initial condition implies that:

$$
\begin{aligned}
u(x, 0)= & A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos (2 n x)+B_{n} \sin (2 n x)\right)=8-3 \sin (2 x)-8 \cos ^{2}(2 x) \\
& =8-3 \sin (2 x)-4(1+\cos (4 x)),
\end{aligned}
$$

and from this we obtain that $B_{n}=0, \quad n \neq 1, \quad A_{n}=0, \quad n \neq 0, n \neq 2 \mathrm{y}$:

$$
A_{0}=4, \quad B_{1}=-3, \quad A_{2}=-4 .
$$

The solution is thus:

$$
u(x, t)=4 e^{2 t}-3 e^{-6 t} \sin (2 x)-4 e^{-30 t} \cos (4 x)
$$

Problem $5(0,5+0,5+1=2$ points $)$

a) Prove that the following problem is not of Sturm-Liouville type and transform it into one:

$$
\left\{\begin{array}{l}
x^{2} \phi^{\prime \prime}+x \phi^{\prime}+\lambda \phi=0, \\
\phi(1)=0, \quad \phi(\mathrm{e})=0 .
\end{array}\right.
$$

b) Prove that all the eigenvalues are positive.
c) Find the eigenvalues and eigenfunctions of the problem.
a) A Sturm-Liouville problem is of the form:

$$
\frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+q(x) \phi+\lambda \sigma \phi=0 .
$$

In our case, we should have: $x^{2}=p(x), x=p^{\prime}(x)$, that is impossible, so we look for an integrating factor $H(x)$ to transform the problem:

$$
\begin{aligned}
& H(x)\left(x^{2} \phi^{\prime \prime}+x \phi^{\prime}+\lambda \phi\right)=0 \quad \Longrightarrow \quad H(x) x^{2}=p(x), \quad H(x) x=p^{\prime}(x) \\
& \Longrightarrow \quad H^{\prime}(x) x^{2}+2 x H(x)=H(x) x \quad \Longrightarrow \quad \frac{H^{\prime}(x)}{H(x)}=-\frac{1}{x} \quad \Longrightarrow \quad H(x)=\frac{1}{x} .
\end{aligned}
$$

The problem is now:

$$
x \phi^{\prime \prime}(x)+\phi^{\prime}(x)+\lambda \frac{1}{x} \phi(x)=\frac{d}{d x}\left(x \frac{d \phi}{d x}\right)+\lambda \frac{1}{x} \phi=0 .
$$

b) We use the Rayleigh quotient, with $p=x, q=0, \sigma=\frac{1}{x}$:

$$
\lambda=\frac{\left[x \phi(x) \phi^{\prime}(x)\right]_{1}^{\mathrm{e}}+\int_{1}^{\mathrm{e}} x\left(\phi^{\prime}(x)\right)^{2} d x}{\int_{1}^{\mathrm{e}} \phi^{2}(x) \frac{1}{x} d x}=\frac{\int_{1}^{\mathrm{e}} x\left(\phi^{\prime}(x)\right)^{2} d x}{\int_{1}^{\mathrm{e}} \phi^{2}(x) \frac{1}{x} d x} \geq 0
$$

Also, $\lambda=0 \quad \Longrightarrow \quad \phi^{\prime}(x)=0 \quad \Longrightarrow \quad \phi(x)=c=\phi(1)=0$, so $\lambda>0$.
c) We can solve it as an Euler equation: $\phi=x^{r}$ and use that $\lambda>0$:

$$
\begin{aligned}
& x^{r}[r(r-1)+r+\lambda]=0 \quad \Longrightarrow \quad r^{2}=-\lambda \quad \Longrightarrow \quad r= \pm i \sqrt{\lambda} \\
& x^{ \pm i \sqrt{\lambda}}=\mathrm{e}^{ \pm i(\sqrt{\lambda} \log x)} \Longrightarrow \quad \Longrightarrow \quad \phi(x)=c_{1} \cos (\sqrt{\lambda} \log x)+c_{2} \sin (\sqrt{\lambda} \log x) \\
& \phi(1)=c_{1}=0, \quad \phi(e)=c_{2} \sin (\sqrt{\lambda})=0 .
\end{aligned}
$$

We only have a non-zero solution if:

$$
\lambda_{n}=n^{2} \pi^{2}, \quad n=1,2, \ldots \quad \phi_{n}(x)=\sin (n \pi \log x)
$$

