Universidad Carlos III de Madrid

Escuela Politécnica Superior

DEPARTAMENTO DE MATEMÁTICAS

DIFFERENTIAL EQUATIONS FINAL EXAM - SOLUTIONS

22th of January, 2018 Degree in Biomedical Engineering.

Time: 3 hours

Problem 1 (1.5 points)

Solve the equation

$$\frac{dy}{dx} - 5y = -\frac{5}{2}xy^3.$$

SOLUTION:

This is a Bernoulli equation with n = 3, we can make the change:

$$z = y^{1-3} = y^{-2} \implies z' = -2y^{-3}y' \implies y' = \frac{-z'y^3}{2}.$$

With the change, the new equation is linear, and we solve it:

$$\frac{-z'y^3}{2} - 5y = -\frac{5}{2}xy^3 \implies z' + 10z = 5x$$

$$\implies z = e^{-\int 10dx} \left[\int 5xe^{\int 10dx} dx + C \right] = e^{-10x} \left[\frac{xe^{10x}}{2} - \frac{e^{10x}}{20} + C \right] = \frac{x}{2} - \frac{1}{20} + Ce^{-10x}$$

$$\implies y = \frac{\pm 1}{\sqrt{\frac{x}{2} - \frac{1}{20} + Ce^{-10x}}}.$$

Problem 2 (2 points)

Find the general solution of the equation:

$$y'' + y = \operatorname{tg}(x).$$

SOLUTION:

First we solve the homogeneous equation and try $y_h = e^{rx}$, then:

$$r^2 + 1 = 0$$
 \Longrightarrow $r = \pm i$ \Longrightarrow $y_h(x) = c_1 \cos(x) + c_2 \sin(x)$,

We obtain a particular solution from these two independent solutions, $y_1 = \cos(x)$ and $y_2 = \sin(x)$ using variation of parameters:

$$y_p = v_1 y_1 + v_2 y_2,$$

where:

$$v_1 = -\int \frac{y_2 R(x)}{W(y_1, y_2)} dx, \qquad v_1 = \int \frac{y_1 R(x)}{W(y_1, y_2)} dx,$$

$$W(y_1, y_2) = \begin{vmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{vmatrix} = 1.$$

So:

$$v_1 = -\int \sin(x) \operatorname{tg}(x) dx = \int (\cos(x) - \sec(x)) dx = \sin(x) - \log|\sec(x) + \operatorname{tg}(x)|.$$
$$v_2 = \int \cos(x) \operatorname{tg}(x) dx = \int \sin(x) dx = -\cos(x).$$

Then a particular solution is:

$$y_p = (\sin(x) - \log|\sec(x) + \operatorname{tg}(x)|)\cos(x) - \cos(x)\sin(x) = -\cos(x)\log|\sec(x) + \operatorname{tg}(x)|.$$

The general solution is:

$$y = c_1 \cos(x) + c_2 \sin(x) - \cos(x) \log|\sec(x) + \tan(x)|$$
.

Problem 3 (1.5 points)

Solve the integro-differential equation

$$f'(x) + \int_0^x 4 \cdot f(x-t) dt = x - \sin x, \qquad f(0) = 2.$$

SOLUTION:

The equation is $f'(x) + 4 * f(x) = x - \sin x$ where * denotes the convolution. Now we apply the Laplace transformation:

$$sF(s) - f(0) + \frac{4}{s} \cdot F(s) = \frac{1}{s^2} - \frac{1}{s^2 + 1}.$$

Then:

$$\frac{s^2+4}{s} \cdot F(s) = \frac{1}{s^2 \cdot (s^2+1)} + 2$$

and:

$$F(s) = \frac{1}{s \cdot (s^2 + 1^2) \cdot (s^2 + 2^2)} + \frac{2s}{s^2 + 2^2}$$

Now we make a decomposition into simple fractions of the first fraction and obtain:

$$F(s) = -\frac{1}{3}\frac{s}{s^2+1^2} + \frac{1}{12} \cdot \frac{s}{s^2+2^2} + \frac{1}{4} \cdot \frac{1}{s} + 2 \cdot \frac{s}{s^2+2^2} = -\frac{1}{3}\frac{s}{s^2+1^2} + \frac{25}{12} \cdot \frac{s}{s^2+2^2} + \frac{1}{4} \cdot \frac{1}{s}$$

Finally, the solution is

$$f(x) = -\frac{1}{3} \cdot \cos x + \frac{25}{12} \cdot \cos 2x + \frac{1}{4}$$

Problem 4 (2.5 points)

Solve, using separation of variables, the telegraph equation

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} + 2\frac{\partial u}{\partial t} + u = \frac{\partial^2 u}{\partial x^2}, & t > 0, \quad x \in (0, \pi), \\ u(0, t) = u(\pi, t) = 0, & t > 0, \\ u(x, 0) = 4\sin(2x), & x \in [0, \pi], \\ \frac{\partial u}{\partial t}(x, 0) = 0, & x \in [0, \pi]. \end{cases}$$

SOLUTION:

We consider solutions of the form $u(x,t) = \phi(x)G(t)$ so:

$$G''(t)\phi(x) + 2G'(t)\phi(x) + G(t)\phi(x) = \phi''(x)G(t)$$
$$\frac{G''(t) + 2G(t)}{G(t)} + 1 = \frac{\phi''(x)}{\phi(x)} = -\lambda$$

We also separate the conditions:

$$u(0,t) = 0 \implies \phi(0) = 0, \qquad u(\pi,t) = 0 \implies \phi(\pi) = 0, \qquad u_t(x,0) = 0 \implies G'(0) = 0.$$

The eigenvalue problem is known:

$$\begin{cases} \phi''(x) + \lambda \phi(x) = 0, \\ \phi(0) = \phi(\pi) = 0. \end{cases} \implies \begin{cases} \phi_n(x) = \sin(nx), \\ \lambda_n = n^2, \end{cases} n = 1, 2, \dots$$

The time problem for each $\lambda_n = n^2$ is the following:

$$\begin{cases} G_n''(t) + 2G_n(t) + (1+n^2)G_n(t) = 0, \\ G_n'(0) = 0. \end{cases}$$

With $G_n = e^{rt}$ we obtain:

$$r^{2} + 2r + (1 + n^{2}) = 0 \implies r = \frac{-2 \pm \sqrt{4 - 4(1 + n^{2})}}{2} = -1 \pm ni.$$

and:

$$G_n(t) = e^{-t} \Big(c_1 \cos(nt) + c_2 \sin(nt) \Big).$$

$$G'_n(t) = e^{-t} \Big(-c_1 \cos(nt) - c_2 \sin(nt) - c_1 n \sin(nt) + c_2 n \cos(nt) \Big).$$

With the initial condition:

$$G'(0) = 0 = -c_1 + c_2 n \implies c_2 = \frac{c_1}{n}.$$

So

$$G_n(t) = Ke^{-t} \left(\cos(nt) + \frac{1}{n}\sin(nt)\right).$$

The product solution, using also the superposition principle is:

$$u(x,t) = \sum_{n=1}^{\infty} B_n \sin(nx) e^{-t} \left(\cos(nt) + \frac{1}{n}\sin(nt)\right).$$

With the non homogeneous initial condition we obtain the coefficients:

$$u(x,0) = 4\sin(2x) = \sum_{n=1}^{\infty} B_n \sin(nx) \implies \begin{cases} B_2 = 4, \\ B_n = 0, \quad n \neq 2. \end{cases}$$

The solution is then:

$$u(x,t) = 4\sin(2x)e^{-t}\left(\cos(2t) + \frac{1}{2}\sin(2t)\right).$$

a) Transform the following into a Sturm-Liouville problem:

$$\begin{cases} r \frac{d}{dr} \left(r \frac{d\phi}{dr} \right) + \lambda r^2 \phi = 0, & 0 < r < 2, \\ \phi(2) = 0, & |\phi(0)| < \infty. \end{cases}$$

- b) Prove that all the eigenvalues are positive and determine the orthogonality relation satisfied by the eigenfunctions.
- c) Find the eigenfunctions and eigenvalues.

SOLUTION:

a) If we divide by r we obtain a Sturm-Liouville equation with p = r, q = 0 and $\sigma = r$:

$$\frac{d}{dr}\left(r\frac{d\phi}{dr}\right) + \lambda r\phi = 0,$$

This can be done directly or with an integrating factor, that is $H(r) = \frac{1}{r}$.

b) We use the Rayleigh quotient to estimate the eigenvalues:

$$\lambda = \frac{\left[-r\phi(r)\phi'(r)\right]_0^2 + \int_0^2 r(\phi'(r))^2 dr}{\int_0^2 \phi^2(r)r \, dr} = \frac{\int_0^2 r(\phi'(r))^2 dr}{\int_0^2 \phi^2(r)r \, dr} \ge 0,$$

and

$$\lambda = 0 \implies \phi'(r) = 0 \quad \forall r \implies \phi(r) = C = \phi(2) = 0.$$

So $\lambda > 0$.

Two eigenfunctions, $\phi_n(r)$ and $\phi_m(r)$ satisfy the orthogonality relation:

$$\int_0^2 \phi_n(r)\phi_m(r)r \ dr = 0 \quad \text{ for } n \neq m.$$

c) The original equation is:

$$r^2\phi'' + r\phi' + \lambda r^2\phi = 0$$

Since $\lambda > 0$, we can make the change:

$$z = \sqrt{\lambda}r \implies r = \frac{z}{\sqrt{\lambda}}, \quad \frac{d}{dr} = \frac{d}{dz}\frac{dz}{dr} = \sqrt{\lambda}\frac{d}{dz}.$$

The new equation is a Bessel equation of order zero:

$$z^2\phi_z z + z\phi_z + z^2\phi = 0$$

The solution is a linear combination of the first and second kind Bessel functions of order zero:

$$\phi = c_1 J_0(z) + c_2 Y_0(z) = c_1 J_0(r\sqrt{\lambda}) + c_2 Y_0(r\sqrt{\lambda})$$

The boundedness condition implies that $c_2 = 0$, so:

$$\phi(r) = J_0(r\sqrt{\lambda}),$$

and with the boundary condition we obtain the eigenvalues:

$$\phi(2) = 0 = J_0(2\sqrt{\lambda}) \implies \lambda_n = \frac{\eta_{0,n}^2}{4}, \quad n = 1, 2, \dots$$

where the $\eta_{0,n}$ are the infinite zeroes of J_0 . The eigenfunctions are:

$$\phi_n(r) = J_0\left(\frac{r\eta_{0,n}}{2}\right), \quad n = 1, 2, \dots$$