Tema 11

Esquemas de firma digital

CURSO CRIPTOGRAFÍA Y SEGURIDAD INFORMÁTICA

Ana I. González-Tablas Ferreres

José M. de Fuentes García-Romero de Tejada

Lorena González Manzano

Pablo Martín González

uc3m Universidad Carlos III de Madrid

Índice

- 11. Esquemas de firma digital
 - Esquemas de firma digital
 - RSA (firma)
 - El Gamal (firma)
 - Ataques
 - Firma digital y cifrado

Índice

- 11. Esquemas de firma digital
 - Esquemas de firma digital
 - RSA (firma)
 - El Gamal (firma)
 - Ataques
 - Firma digital y cifrado

Esquemas de firma digital

- [Ribagorda:1997] (ISO-7498-2)
 - Datos añadidos a un conjunto de datos, o transformación de éstos, que permite al receptor probar el origen e integridad del conjunto de datos recibidos, así como protegerlos contra falsificaciones; por ejemplo, del propio receptor.
- [NIST SP 800-57 Pt. 1 Rev. 4:2016]
 - El resultado de una transformación criptográfica de datos que, si se aplica correctamente, según la infraestructura y políticas, proporciona los servicios de:
 - Autenticación del origen,
 - Integridad de los datos, y
 - No repudio del firmante

Esquemas de firma digital

- Concepto introducido por Diffie y Hellman en 1976
- Analogía electrónica de la firma manual
- Propiedades de una firma manual:
 - Fácil y barata de producir
 - Fácil de reconocer
 - Imposible de rechazar por el propietario
 - Infalsificable (teóricamente)
- La firma digital debería cumplir las mismas propiedades, pero:
 - No puede ser siempre la misma ya que sería fácilmente falsificable

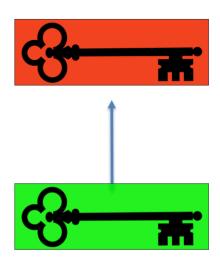
Esquemas de firma digital. Propiedades de seguridad

- Autentica indubitablemente al signatario de una información
- Garantiza la integridad del mensaje recibido al imposibilitar su modificación fraudulenta
- Garantiza el no repudio (del firmante): medio de prueba en la resolución de disputas

NO asegura la confidencialidad

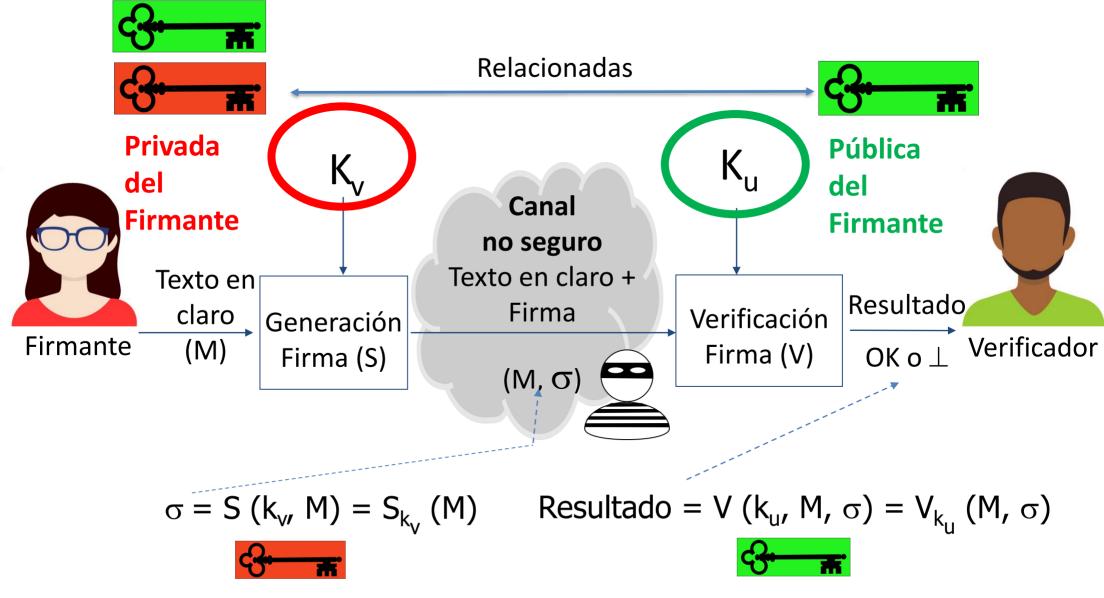
Esquema de firma digital. Componentes

- Un esquema de firma digital comporta tres partes:
 - Algoritmo de generación de claves G
 - Algoritmo de firma S
 - Algoritmo de verificación de la firma V

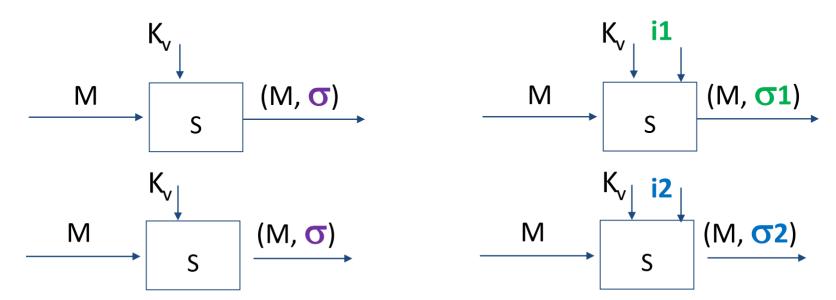

Esquemas de firma digital

Emplea <u>pares</u> de claves:

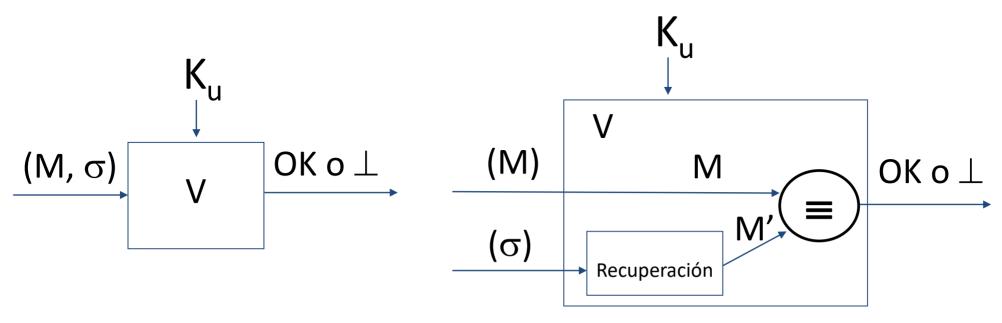
- clave privada
 - Conocida sólo por el propietario
 - Usada para firmar por el Firmante



- Conocida por todos
- El Verificador usa la clave pública del Firmante para verificar las firmas emitidas por éste (el Firmante)

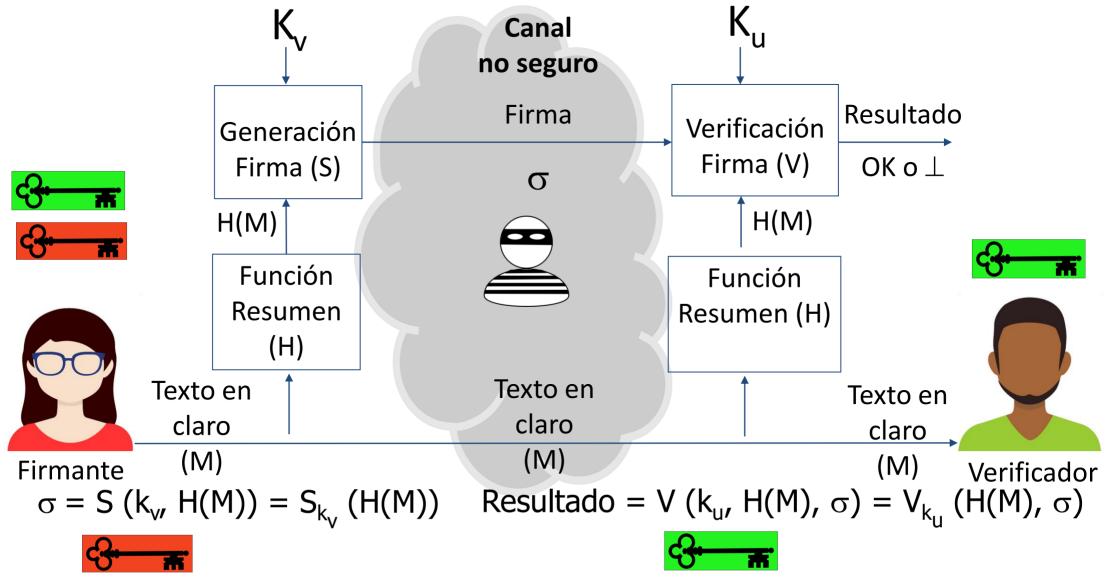

Esquemas de firma digital

Esquema de firma digital. Determinista vs Aleatorio


- El esquema de firma puede ser:
 - Determinista: Dos firmas del mismo mensaje producen el mismo resultado (por ejemplo, las firmas basadas en el algoritmo RSA)
 - Aleatorio: Las firmas de un mismo mensaje dependen de un conjunto de índices (por ejemplo, las basadas en el algoritmo El Gamal)

Esquema de firma digital. Con apéndice vs Recuperación del mensaje

- El esquema de firma puede ser:
 - Con apéndice o separada del mensaje: La firma se vuelca en un apéndice (e.g., firmas basadas en el algoritmo El Gamal)
 - Con recuperación del mensaje: La firma está integrada en el propio mensaje transformado (e.g., firmas basadas en el algoritmo RSA)



Esquemas de firma digital. Paradigma "resume y firma"

- En general se aplica primero una función resumen al mensaje antes de firmar
 - Por eficiencia, sobre todo si se debe firmar mensajes muy largos
 - Por seguridad, en esquemas basados tanto en El Gamal como en RSA
- En verificación, se debe también aplicar la función resumen sobre el mensaje antes de verificar

Esquemas de firma digital. Paradigma "resume y firma"

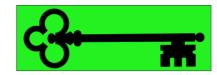
Índice

- 11. Esquemas de firma digital
 - Esquemas de firma digital
 - RSA (firma)
 - El Gamal (firma)
 - Ataques
 - Firma digital y cifrado

- Esquema de firma
 - Determinista
 - Con recuperación del mensaje
- Seguridad basada en la factorización de los números enteros
 - Se recomiendan los mismos tamaños de clave que para el cifrado

Generación del par de claves por A

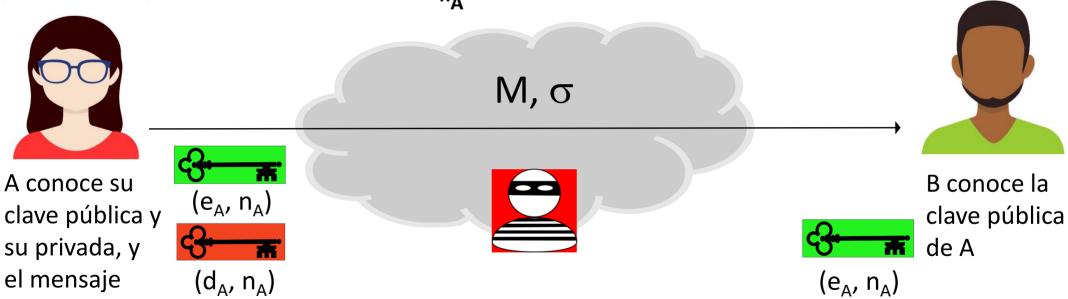
- A elige p_A , q_A (primos muy grandes, no públicos)


- A calcula
$$\phi(n_A) = \phi(p_A) \cdot \phi(q_A)$$

- A escoge $e_A \in Z+/m.c.d. (e_A, \phi(n_A))=1$

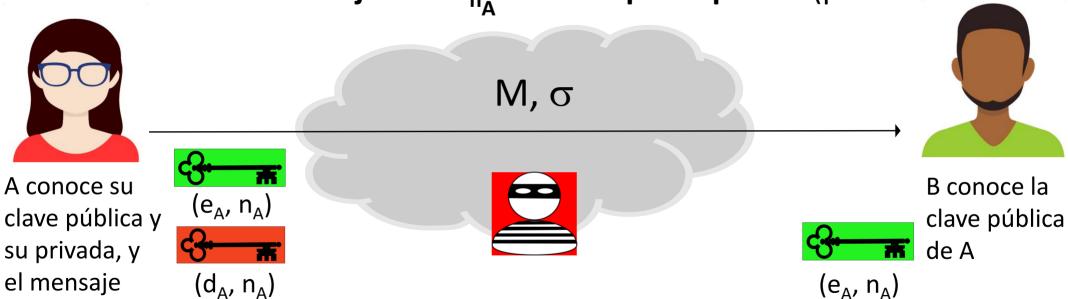
- A calcula $d_A / e_A \cdot d_A = 1$ mód. $\phi(n_A)$

• Clave pública de A: $k_{U,A} = (e_A, n_A)$



• Clave privada de A: $k_{VA} = (d_A, n_A)$

Envío de un mensaje M ∈Z_{nA} firmado por A para B (parte 1)



A obtiene la firma sobre M usando (d_A, n_A) , su clave privada, y envía a B el mensaje M y la firma σ

$$(M, \sigma = M^{d_A} \mod n_A)$$

Envío de un mensaje $M \in Z_{n_A}$ firmado por A para B (parte 1)

B verifica la firma sobre M usando (e_A, n_A) , la clave pública de A, y acepta el mensaje firmado solo si el resultado es OK

$$M' = \sigma^{e_A} \mod n_A;$$

$$M' = \sigma^{e_A} \mod n_A$$
; si $M' \equiv M \rightarrow OK$, si no, \perp

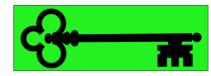
Índice

- 11. Esquemas de firma digital
 - Esquemas de firma digital
 - RSA (firma)
 - El Gamal (firma)
 - Ataques
 - Firma digital y cifrado

- Esquema de firma
 - Aleatorio
 - Con apéndice
- Seguridad basada en el cálculo del logaritmo discreto
 - Se recomiendan los mismos tamaños de clave que para el cifrado
- Habitualmente no se usa el esquema de El Gamal, si no esquemas derivados de una variante estandarizada de El Gamal, conocida como DSA (Digital Signature Algorithm)

Generación del par de claves por A

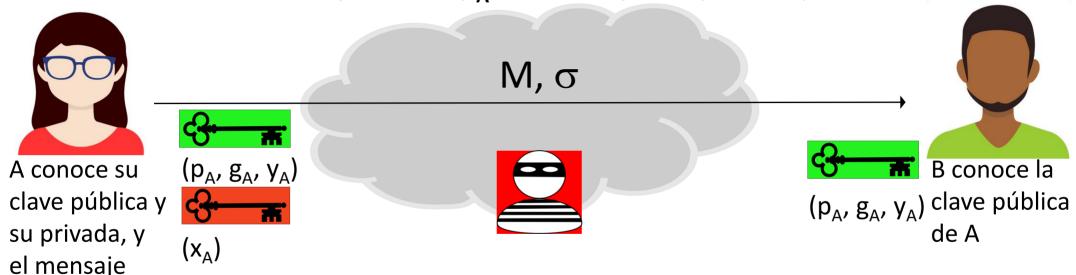
- A elige p_A , primo muy grande


- A elige g_A , generador de grupo cíclico G de orden p_A

- A elige x_A , clave privada de A | $1 < x_A < p_A - 1$

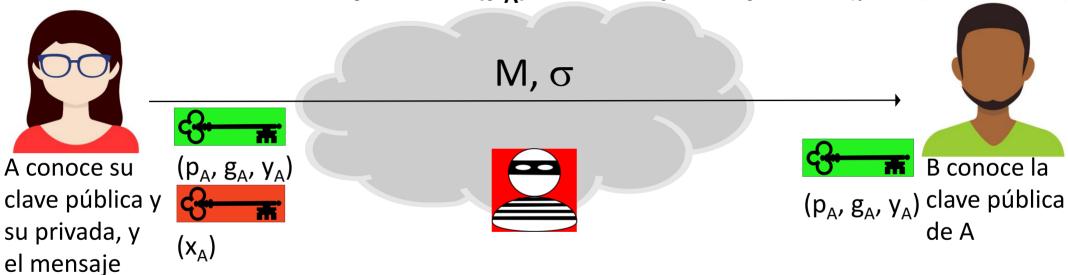
- A calcula y_A , clave pública de B $(y_A = g^{x_A} \mod p_A)$

• Clave privada de A: $k_{V,A} = (x_A)$



• Clave pública de A: $k_{U,A} = (p_A, g_A, y_A)$

• Envío de un mensaje $M \in G(p_{\Delta})$ firmado por A para B (parte 1)


A elige una clave temporal $k_s \mid 0 < k_s < p_A$ y calcula $\mathbf{r} = g^{k_s}$ (mód. p_A) A, usando su clave privada (x_A) , calcula $\mathbf{s} = (M - x_A) \cdot k_s^{-1}$ mód. $(p_A - 1)$ A envía a B el mensaje M y la firma sobre éste, $\sigma = (\mathbf{r}, \mathbf{s})$

$$(M, \sigma) = (M, r, s) = (M, g^{k_s} (m \circ d. p_A), (M - x_A. r) \cdot k_s^{-1} m \circ d. (p_A - 1))$$

Envío de un mensaje M ∈G(p_A) firmado por A para B (parte 2)

B verifica la firma sobre M usando (p_A, g_A, y_A) , la clave pública de A, y acepta el mensaje firmado solo si el resultado es OK

$$V_1 = y_A^r$$
. r^s (mód. p_A); $V_2 = g_A^M$ (mód. p_A); $si V_1 \equiv V_2 \rightarrow OK$, $si no, \bot$

Índice

- 11. Esquemas de firma digital
 - Esquemas de firma digital
 - RSA (firma)
 - El Gamal (firma)
 - Ataques
 - Firma digital y cifrado

Ataques

- El objetivo para un atacante a un proceso de firma digital es crear firmas que sean aceptadas como válidas.
 - Rotura total: El atacante posee un algoritmo de firma funcionalmente equivalente al auténtico.
 - Rotura selectiva: El atacante es capaz de forjar una firma para un tipo particular de mensaje.
 - Rotura existencial: El atacante es capaz de forjar una firma para al menos un mensaje.

Ataques. RSA

 RSA de "libro-de-texto" es vulnerable a ataques de rotura existencial

Ataque 1:

C quiere crear una firma válida, como si la hubiese generado A

Supongamos que C conoce clave pública de A (e_A, n_A)

C escoge $\sigma \in Z_{n_{\Delta}}$ aleatoriamente y calcula M = $\sigma^{e_{A}}$ mód. n_{A}

C envía a B el mensaje M y la firma "ficticia" sobre éste:

$$C \rightarrow B: (M, \sigma)$$

B verifica el mensaje recibido como efectivamente firmado por A, pues

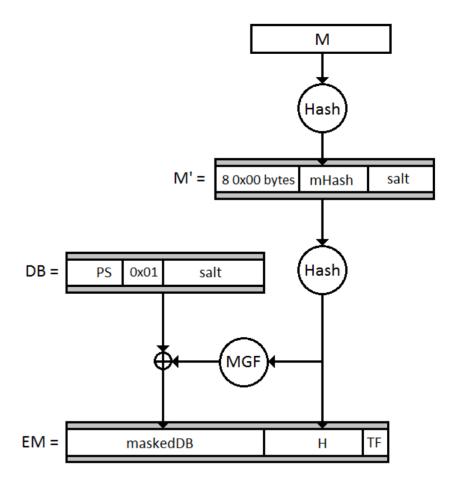
$$M \equiv M' = \sigma^{e_A} \mod n_A \rightarrow OK$$

Ataques. RSA

Ataque 2:

C puede crear una firma válida, a partir de 2 generadas por A C obtiene dos pares de mensaje con su firma:

$$(M_1, \sigma_1); (M_2, \sigma_2)$$


escoge $\sigma \in Z_{n_A}$ aleatoriamente y calcula $M = \sigma^{e_A}$ mód. n_A C puede crear una firma válida σ' para el mensaje $M' = M_1 \cdot M_2$ mód. n_A $\sigma' = \sigma_1 \cdot \sigma_2 \text{ mód. } n_A$

B verifica el mensaje recibido como efectivamente firmado por A, pues $M' \equiv \sigma'^{e_A} \mod n_A = \sigma_1^{e_A} \cdot \sigma_2^{e_A} \mod n_A = M_1 \cdot M_2 \mod n_A \rightarrow OK$

Ataques. RSA

Solución:

- Aplicar una función resumen al mensaje antes de firmar previene el éxito de estos ataques
- Sin embargo, esto no es suficiente para los estándares requeridos de seguridad. Es necesario convertir RSA en un esquema aleatorio
- RSA-PSS (Probabilistic Signature Scheme)
 - Se añaden unos rellenos (paddings)
 específicos y un valor aleatorio (salt) de
 forma parecida a la Figura adjunta

Ataques. El Gamal

- Al igual que con RSA, El Gamal de "libro-de-texto" es vulnerable a ataques de rotura existencial
 - No veremos los detalles
- Solución:
 - Igual que con RSA, es necesario aplicar una función resumen al mensaje antes de firmar
 - Comúnmente se utiliza DSA o ECDSA (DSA sobre curvas elípticas escogidas cuidadosamente), aunque no todas las variantes ofrecen los niveles de seguridad requeridos en la actualidad

Índice

- 11. Esquemas de firma digital
 - Esquemas de firma digital
 - RSA (firma)
 - El Gamal (firma)
 - Ataques
 - Firma digital y cifrado

Firma digital y cifrado

- Para construir un canal seguro (confidencialidad, autenticación e integridad) con criptografía de clave pública es necesario combinar un criptosistema de clave pública y un esquema de firma digital seguros
- Durante las últimas décadas se ha estado discutiendo sobre las propiedades de seguridad de diversas construcciones
 - Sign-then-encrypt
 - Sign-and-encrypt
 - Encrypt-then-sign

Davis, D. (2001, June). Defective Sign & Encrypt in S/MIME, PKCS# 7, MOSS, PEM, PGP, and XML. In *USENIX Annual Technical Conference, General Track* (pp. 65-78). https://pdfs.semanticscholar.org/3de0/d2e8d6a46c07264bbe1cacefc446b35b2b7e.pdf

Firma digital y cifrado

- Finalmente se ha definido un nuevo esquema, denominado signcryption, y que debe garantizar que:
 - Si A envía un mensaje a B cifrado con uno de estos esquemas,
 - solo el receptor B puede acceder al mensaje, y
 - el receptor tiene garantías de que el mensaje proviene del emisor A
- Se admiten como combinaciones seguras sign-then-encrypt y encrypt-then-sign si se referencian las identidades del receptor (en la firma) y del emisor (en el cifrado), entre otras consideraciones

CURSO CRIPTOGRAFÍA Y SEGURIDAD INFORMÁTICA

uc3m Universidad Carlos III de Madrid

