

# Grado en Ciencia e Ingeniería de Datos, 2018-2019

#### Unit 6. Graphs

# Algorithms and Data Structures (ADS)

Author: Isabel Segura-Bedmar



# Index

- Introduction to Graphs
- Graph properties
- Graph representation:
  - Adjacency Matrix.
  - Adjacency List.
- Graph Traversal

Introduction to Graphs

Linear data structures:



# Introduction to Graphs

Non-linear data structures:



#### Introduction to Graphs

Non-linear data structures:



Graph

No rules for connections

# Index

- Introduction to Graphs
- Graph properties
- Graph representation:
  - Adjacency Matrix.
  - Adjacency List.
- Graph Traversal

Graph:

A graph G is an ordered pair of a set V of vertices and a set E of edges

G=(V,E)



Graph

#### How can we represent an edge?



V = { v1, v2, v3, v4, v5, v6, v7, v8}

Types of edges:

$$\{u,v\} = \{v,u\}$$

#### directed vs. undirected



#### a directed graph (digraph)



#### an undirected graph



IVI =number of vertices IEI =number of edges

 $V = \{ v1, v2, v3, v4, v5, v6, v7, v8 \}$ E= { {v1, v2}, {v1, v3}, {v1, v4}, {v2, v5}, {v2, v6}, {v3, v7}, {v4, v8}, {v5, v8}, {v6, v8}, {v7, v8} \}

#### IVI = 8, IEI=10

Social Network (undirected graph)









Find all nodes having length of shortest path from Isabel equal to 2

World Wide Web (it's a directed graph)



Pages as vertices (have a unique URL)



Type of edges







When are they necessary?

#### World Wide Web



A web page may contain a link to itself

Type of edges Multi-edge (parallel edges)



Madrid

#### Sevilla

D

- Loops and parallel edges lead to complicate graph algorithms
- A graph is simple if it has no loops or parallel edges.



What is the maximum possible number of edges in a simple directed graph?

A C D |V| = 4|E| = 0 (minimum)

|V| = 4 |E| = 12 (maximum)

If /V/ = n, each vertex may have n-1 edges. Therefore,  $0 \le /E/\le n(n-1)$ , if directed



If /V/ = n, each vertex may have n-1 edges. Therefore,  $0 \le /E/\le n(n-1)/2$ , if directed

 A graph is dense if the number of its edges is close to its maximum possible number (≈ |V|<sup>2</sup>)



 A graph is sparse if the number of its edges is close to its number of vertices (≈|V|)



• Knowing if a graph is dense or sparse can help us to select the most appropriate data structure to represent it.



• Path is a sequence of vertices where each adjacent pair is connected by an edge

<A,B,F,E,G>



# <A,B,<u>F,E</u>,G,<u>F,E</u>> This is not a simple path (two repeated vertices and one edge)



• A graph is strongly connected if there is a path from any vertex to any other vertex.



• Simple cycle is a close walk with no repetition other than start and end.



Acyclic graph is a graph with no cycles.



Undirected acyclic graph

directed acyclic graph (DAG)

# Index

- Introduction to Graphs
- Graph properties
- Graph representation:
  - Adjacency Matrix.
  - Adjacency List.
- Graph Traversal

#### Graph representation



How can we create and store a graph in computer memory?

#### G=(V,E), V vertices, E edges

# Index

- Introduction to Graphs
- Graph properties
- Graph representation:
  - Adjacency Matrix.
  - Adjacency List.
- Graph Traversal

#### Graph representation: Adjacency Matrix



5

F

We can use a Python list to store the vertices. Each vertex is represented by an index.

35

#### Graph representation: Adjacency Matrix




| $\sim$ 5 $\circ$ 0 |   |   | 0        | 1        | 2        | 3        | 4        | 5        |
|--------------------|---|---|----------|----------|----------|----------|----------|----------|
|                    | Α | 0 | $\infty$ | 5        | 1        | $\infty$ | $\infty$ | $\infty$ |
| 1 6 E <sup>1</sup> | В | 1 | 5        | $\infty$ | $\infty$ | 6        | 9        | $\infty$ |
|                    | С | 2 | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 7        |
| 3                  | D | 3 | $\infty$ | 6        | $\infty$ | $\infty$ | 8        | $\infty$ |
| 7 (F) 4            | Ε | 4 | $\infty$ | 9        | $\infty$ | 8        | $\infty$ | 8        |
| 5                  | F | 5 | $\infty$ | $\infty$ | 7        | $\infty$ | $\infty$ | $\infty$ |

Representation of weighted graph



Finding adjacent nodes

O(n)

#### Graph representation: Adjacency Matrix 3 5 2 4 0 () 1 0 0 1 Π А 1 1 B 1 1 $\left( \right)$ $\left( \right)$ 2 2 С 1 Π 1 3 3 1 $\square$ 1 Ω 5 4 4 E 1 1 Π Π Ω |V| = n5 5 F 1 Time complexity **Operations:** Checking if two given O(1) nodes are adjacent (M(1,3)?)



- In terms of time complexity, adjacency matrix is an efficient data structure.
- However, in terms of space complexity, it is too costly.
- Adjacency matrix is a good representation when n<sup>2</sup> is small or the graph is dense.
- However, most real graphs are sparse (for example, WWW).



If  $|V| = 10^9$  space=  $10^{18}$ 

Suppose avg. number of friends  $\approx 1000$ |E| =  $(10^{9*}10^3)/2 = 10^{12}/2^{<<} 10^{18}$ 

# Index

- Introduction to Graphs
- Graph properties
- Graph representation:
  - Adjacency Matrix.
  - Adjacency List.
- Graph Traversal



## Graph representation: Adjacency List



If B has 1000 friends: Numbers of 1: 1000 **≈ 1 KB** Numbers of 0: 10<sup>9</sup>- 1000 **≈ 1 GB** 

# Graph representation: Adjacency List



# <sup>0</sup> Graph representation: Adjacency List



Adjacency list can be represented as a list of lists





Each adjacent vertex is represented with a pair (i,j) where i is the index of the vertex and j the related weight.

## Graph representation: Matrix versus List



### Graph representation: Matrix versus List



Most real graphs are sparse ( $|E| \approx |V| < |V|^2$ )

# Graph representation

- Most real graphs are sparse (|E|≈ |V|<<|V|<sup>2</sup>)
- Adjacency matrix, space complexity O(|V|<sup>2</sup>), time complexity O(|V|) (sometimes O(1)). It is a good solution when the graph is dense or n<sup>2</sup> is small.
- Adjacency list, space complexity: O(|E|) <<O(|V|<sup>2</sup>) (if graph is sparse). Time complexity: O(|V|)

# Index

- Introduction to Graphs
- Graph properties
- Graph representation:
  - Adjacency Matrix.
  - Adjacency List.
- Graph Traversal
  - Breadth-first Traversal
  - Depth-first Traversal

#### Graph traversal

#### Visiting all the nodes of the graph



## Graph traversal



- 1) Breadth-first traversal (BFS)
- 2) Depth-first traversal (DFS)



Idea: visit nodes in layers (levels). It's similar to Level-order traversal in trees



#### Output: A



#### Output: A B C D



#### Output: A B C D E F



#### Output: A B C D E F G



#### Output: A B C D E F G H





Start by a node (for example, vertex=0), and put it into the queue

**q** | 0



While the queue is not empty, repeat:

- 1. Remove the head from the queue
- 2. Print it and save it into the visited list





While the queue is not empty, repeat:

- 1. Remove the head from the queue
- 2. Print it and save it into the visited list
- 3. Get its adjacent nodes and put them into the queue (only not visited)



While the queue is not empty, repeat:

- 1. Remove the head from the queue
- 2. Print it and save it into the visited list
- 3. Get its adjacent nodes and put them into the queue (only not visited)

B (1) has as adjacent nodes: E(4), F (5)

visited

output:

| 0 | 1 |  |
|---|---|--|
| U | I |  |



While the queue is not empty, repeat:

- 1. Remove the head from the queue.
- 2. Print it and save it into the visited list
- 3. Get its adjacent nodes and put them into the queue (only not visited)

C(2) has no adjacent nodes





While the queue is not empty, repeat:

- Remove the head from the queue. 1.
- 2. Print it and save it into the visited list
- 3. Get its adjacent nodes and put them into the queue (only not visited)

D(3) has one only adjacent node, F(5), which is already in the queue

visited

2 3  $\mathbf{0}$ 



While the queue is not empty, repeat:

- 1. Remove the head from the queue.
- 2. Print it and save it into the visited list
- 3. Get its adjacent nodes and put them into the queue (only not visited)

0

E(4) has one only adjacent node, G(6)

visited output:

0 1 2 3 4



While the queue is not empty, repeat:

- Remove the head from the queue. 1.
- 2. Print it and save it into the visited list
- 3. Get its adjacent nodes and put them into the queue (only not visited)

F(5) does not have any adjacent node

0

visited:




While the queue is not empty, repeat:

- Remove the head from the queue.
- Print it and save it into the visited list
- Get its adjacent nodes and put them into the queue (only not visited) $\Sigma$



While the queue is not empty, repeat:

- 1. Remove the head from the queue.
- 2. Print it and save it into the visited list
- 3. Get its adjacent nodes and put them into the queue (only not visited)∑

The queue is empty and all the nodes have already visited!!!

output:

q

```
Algorithm bst (vertex):
q=Queueu() #queue for adjacent vertices
visited=[]
q.enqueue (vertex)
while q.isEmpty() == False:
   current=q.dequeue()
   print(current)
   visited.append(current)
   adjLst=getAdjacents(current)
   for v in adjLst:
     if v not in visited:
        q.enqueue(v)
```

# Index

- Introduction to Graphs
- Graph properties
- Graph representation:
  - Adjacency Matrix.
  - Adjacency List.
- Graph Traversal
  - Breadth-first Traversal
  - Depth-first Traversal



Select a node and go forward as far as possible along a branch, if not then, backtrack



Select a node and go forward as far as possible along a branch, if not then, backtrack

Output: A,



Select a node and go forward as far as possible along a branch, if not then, backtrack

Output: A,B



Select a node and go forward as far as possible along a branch, if not then, backtrack

Output: A, B, E























# Output: A, B, E, G, H, F, C, D



# Algorithm depth(vertex, visited): print(vertex) visited.append(vertex) for v in getAdjacents(vertex): if v not in visited[v]: depth(v,visited)

Note: visited is a list to store the nodes that we visit.