
Unit 6. Graphs

Algorithms and Data Structures (ADS)

1Author: Isabel Segura-Bedmar

Grado en Ciencia e Ingeniería de
Datos, 2018-2019

Index

2

● Introduction to Graphs
● Graph properties
● Graph representation:

○ Adjacency Matrix.
○ Adjacency List.

● Graph Traversal

Introduction to Graphs

3

Linear data structures:

Introduction to Graphs

4

Non-linear data structures:

Introduction to Graphs

5

Non-linear data structures:

Nodes or vertices
Edges

No rules for connections

Index

6

● Introduction to Graphs
● Graph properties
● Graph representation:

○ Adjacency Matrix.
○ Adjacency List.

● Graph Traversal

Graph properties

7

Graph:

A graph G is an ordered pair of a
set V of vertices and a set E of
edges

G=(V,E)

Graph properties

8

V = { v1, v2, v3, v4, v5, v6, v7, v8}

How can we represent an edge?

Graph properties

9

(u,v)!=(v,u) if u!=v

{u,v} ={v,u}

Types of edges:

Graph properties

10

directed vs. undirected

a directed graph
(digraph) an undirected graph

Graph properties

11

V = { v1, v2, v3, v4, v5, v6, v7, v8}
E= { {v1, v2}, {v1, v3}, {v1, v4},{v2,v5}, {v2,v6},

{v3,v7}, {v4,v8}, {v5,v8},{v6,v8}, {v7,v8}}

ΙVΙ =number of vertices
ΙEΙ =number of edges

ΙVΙ = 8, ΙEΙ=10

Graph properties

12

Social Network (undirected graph)

Isabel

César
Leti

Moni

Chus

Juan

David

Ana

Diego

Tom Pablo

Fede

Fran

Graph properties

13

How to suggest some
new friends to Isabel?

Isabel

César
Leti

Moni

Chus

Juan

David

Ana

Diego

Tom Pablo

Fede

Fran

Graph properties

14

Isabel

César
Leti

Moni

Chus

Juan

David

Ana

Diego

Tom Pablo

Fede

Fran

Graph properties

15

Isabel

César
Leti

Moni

Chus

Juan

David

Ana

Diego

Tom Pablo

Fede

Fran

Find all nodes having length of shortest path
from Isabel equal to 2

Graph properties

16

PageC

PageA
PageB

PageG

PageH

PageD

PageE

PageF

PageE has a link to PageF

World Wide Web (it’s a directed graph)

Pages as vertices (have a unique URL)

Graph properties

17 weighted graph

Leganés Getafe

Pta
Toledo Colmenarejo

Aranjuez

10
45

48

82

46
14

13

35

41

39

UC3M Campuses (distance in kilometers)

17

Graph properties

18

Type of edges

loop

When are they necessary?

Graph properties

19

World Wide Web

PageC

PageA
PageB

PageG

PageH

PageD

PageE

PageF

A web page may contain a link to itself

Graph properties

20

Type of edges Multi-edge (parallel edges)

Sevilla

Madrid

AV
E9

12AV
E3

01
AV

E5
08

Graph properties

21

● Loops and parallel edges lead to complicate graph
algorithms

● A graph is simple if it has no loops or parallel edges.

Graph properties

22

What is the maximum possible number of
edges in a simple directed graph?

A B

C D

|V| = 4
|E| = 0 (minimum)

|V| = 4
|E| = 12 (maximum)

If /V/ = n, each vertex may have n-1 edges.
Therefore, 0<= /E/<=n(n-1), if directed

Graph properties

23

What is the maximum possible number of
edges in a simple undirected graph?

If /V/ = n, each vertex may have n-1 edges.
Therefore, 0<= /E/<=n(n-1)/2, if directed

A B

C D

|V| = 4
|E| = 0 (minimum)

|V| = 4
|E| = 6 (maximum)

Graph properties

24

● A graph is dense if the number of its edges is close
to its maximum possible number (≈ |V|2)

A B

C D

Graph properties

25

● A graph is sparse if the number of its edges is close
to its number of vertices (≈|V|)

A B

C D

Graph properties

26

● Knowing if a graph is dense or sparse can help us to
select the most appropriate data structure to represent
it.

A B

C D

A B

C D
dense sparse

Graph properties

27

● Path is a sequence of vertices where each adjacent
pair is connected by an edge

A B

C D

E G

F

H

<A,B,F,E,G>

It is a a simple path
(vertices are not repeated)

Graph properties

28

A B

C D

E G

F

H

<A,B,F,E,G,F,E> This is not a simple path (two
repeated vertices and one edge)

Graph properties

29

● A graph is strongly connected if there is a path from
any vertex to any other vertex.

A B

C D

A B

C
strongly connected

A B

C
Weakly connected

Graph properties

30

● Simple cycle is a close walk with no repetition other
than start and end.

A

C D

B

Graph properties

31

Acyclic graph is a graph with no cycles.

A B

C D

E
A B

C D

E

Undirected acyclic graph directed acyclic graph (DAG)

Index

32

● Introduction to Graphs
● Graph properties
● Graph representation:

○ Adjacency Matrix.
○ Adjacency List.

● Graph Traversal

Graph representation

33

G=(V,E), V vertices, E edges

A B

C D

E

F

How can we create and store
a graph in computer
memory?

Index

34

● Introduction to Graphs
● Graph properties
● Graph representation:

○ Adjacency Matrix.
○ Adjacency List.

● Graph Traversal

Graph representation: Adjacency Matrix

35

A
B
C
D
E
F

Vertex list

A B

C D

E

F

0

1

2

3

4

5We can use a Python list to store the vertices.
Each vertex is represented by an index.

36

Graph representation: Adjacency Matrix

A
B
C
D
E
F

A B

C D

E

F

0

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 0 1 0 0 0

0

1

2

3

4

5

0 1 2 3 4 5

1, if {i, j} is an edge
Mij =

0, otherwise

0 1

2 3

4

5

37

Graph representation: Adjacency Matrix

A
B
C
D
E
F

A B

C D

E

F

0

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 0 1 0 0 0

0

1

2

3

4

5

0 1 2 3 4 50 1

2 3

4

5

undirected graph
 Mij = Mji

38

Graph representation: Adjacency Matrix

A
B
C
D
E
F

A B

C D

E

F

5

1

7

8

9

6
0

1

2

3

4

5

∞ 5 1 ∞ ∞ ∞
5 ∞ ∞ 6 9 ∞
1 ∞ ∞ ∞ ∞ 7
∞ 6 ∞ ∞ 8 ∞
∞ 9 ∞ 8 ∞ ∞
∞ ∞ 7 ∞ ∞ ∞

0

1

2

3

4

5

0 1 2 3 4 5

Representation of weighted graph

39

Graph representation: Adjacency Matrix

A
B
C
D
E
F

A B

C D

E

F

0

1

2

3

4

5

0 0 0 0
0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0

0

1

2

3

4

5

1 1
1 1 1

11
1 1
1

1
1

0 1

3

4

5

Operations: Time complexity

Finding adjacent nodes

|V| = n

0 1 2 3 4 5

O(n)

40

Graph representation: Adjacency Matrix

A
B
C
D
E
F

A B

C D

E

F

0

1

2

3

4

5

0 0 0 0
0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0

0

1

2

3

4

5

1 1
1 1 1

11
1 1
1

1
1

0 1

2 3

4

5

Operations: Time complexity
Checking if two given
nodes are adjacent (M(1,3)?)

O(1)

|V| = n

0 1 2 3 4 5

41

Graph representation: Adjacency Matrix

A
B
C
D
E
F

A B

C D

E

F

0

1

2

3

4

5

0 0 0 0
0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0

0

1

2

3

4

5

1 1
1 1 1

11
1 1
1

1
1

0 1

2 3

4

5

Space complexity:
If |V| = n, O(n2)

42

Graph representation: Adjacency Matrix

● In terms of time complexity, adjacency matrix is an
efficient data structure.

● However, in terms of space complexity, it is too costly.
● Adjacency matrix is a good representation when n2 is

small or the graph is dense.
● However, most real graphs are sparse (for example,

WWW).

43

Graph representation: Adjacency Matrix

Isabel

César
Leti

Moni

Chus

Juan

David

Ana

Diego

Tom

Pablo
Fede

If |V| = 109 space= 1018

Suppose avg. number of friends ≈ 1000
|E| = (109*103)/2 = 1012/2<< 1018

Index

44

● Introduction to Graphs
● Graph properties
● Graph representation:

○ Adjacency Matrix.
○ Adjacency List.

● Graph Traversal

45

Graph representation: Adjacency Matrix

A
B
C
D
E
F

A B

C D

E

F

0

1

2

3

4

5

0 0 0 0
0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0

0

1

2

3

4

5

1 1
1 1 1

11
1 1
1

1
1

0 1

2 3

4

5
|V|=6, matrix=6x6

1 0 0 1 1 0
0 1 2 3 4 5

List of size 6
Adjacent
vertices
for B?

46

Graph representation: Adjacency List

A B

C D

E

F

0 1

2 3

4

5

Connections for B:

1 0 0 1 1 0
0 1 2 3 4 5

Suppose Facebook has 109 users
dimension of row is 109

If B has 1000 friends:
Numbers of 1: 1000 ≈ 1 KB
Numbers of 0: 109- 1000 ≈ 1 GB

47

Graph representation: Adjacency List

A B

C D

E

F

0 1

2 3

4

5

Connections for B:

1 0 0 1 1 0
0 1 2 3 4 5

0 3 4

Python List

0 3 4 None1

Linked List

You can use:
a) A Python List, or
b) A Linked List

48

Graph representation: Adjacency List

0 3 4

A B

C D

E

F

1

2 3

4

5

1
1 20

0 52

1 43

1 34
25

Adjacency list can be represented as a list of lists

0

A
B
C
D
E
F

0

1

2

3

4

5

49

Graph representation: Adjacency List
A B

C D

E

F

1

2 3

4

5

0

0 3 4 None1

1 2 None0

0 5 None2

1 4 None3

1 3 None4

2 None5

Adjacency list
= List of Linked Lists

50

Graph representation: Adjacency List

1

(1,5) (2,1)0

2

A B

C D

E

F

5

1

11

8

9

6 (0,5) (3,6) (4,9)

Adjacency list
(weighted graph)

1

2 3

4

5

0

(0,1) (5,11)

3 (1,6) (4,8)

4 (1,9) (3,8)

5 (2,11)

Each adjacent vertex is represented with a pair (i,j) where i is the
index of the vertex and j the related weight.

51

Graph representation: Matrix versus List

A B

C D
E

F

0 1 1 0 0 0
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0

0

1

2

3

4

5

0 1

2 3

4

5

0 1 2 3 4 5

1 2

0 5
0 3 4

1 4
1 3
1

0

1

2

3

4

5

Operations:
✔ adjacent nodes for i?
✔ (i,j) is an edge?

O(n) O(1)
O(1) O(n)

52

Graph representation: Matrix versus List

A B

C D
E

F

0 1 1 0 0 0
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0

0

1

2

3

4

5

0
1

2 3

4

5

0 1 2 3 4 5

1 2

0 5
0 3 4

1 4
1 3
1

0

1

2

3

4

5

Space = O(n2) Space = O(e)

Most real graphs are sparse (|E|≈|V|<<|V|2)

53

Graph representation

● Most real graphs are sparse (|E|≈ |V|<<|V|2)
● Adjacency matrix, space complexity O(|V|2), time

complexity O(|V|) (sometimes O(1)). It is a good
solution when the graph is dense or n2 is small.

● Adjacency list, space complexity: O(|E|) <<O(|V|2) (if
graph is sparse). Time complexity: O(|V|)

Index

54

● Introduction to Graphs
● Graph properties
● Graph representation:

○ Adjacency Matrix.
○ Adjacency List.

● Graph Traversal
○ Breadth-first Traversal
○ Depth-first Traversal

55

Graph traversal

Visiting all the nodes of the graph

A B

G D

C

F E

Traveling Salesman Problem (TSP)

56

Graph traversal
Visiting all the nodes of the graph

1) Breadth-first traversal (BFS)
2) Depth-first traversal (DFS)

A

CB

E F

G

D

H

57

Graph traversal: Breadth-first traversal (BFS)
A

CB

E F

G

D

H

Idea: visit nodes in layers (levels). It’s
similar to Level-order traversal in trees

58

Graph traversal: Breadth-first traversal (BFS)
A

CB

E F

G

D

H

Output: A

59

Graph traversal: Breadth-first traversal (BFS)
A

CB

E F

G

D

H

Output: A B C D

60

Graph traversal: Breadth-first traversal (BFS)
A

CB

E F

G

D

H

Output: A B C D E F

61

Graph traversal: Breadth-first traversal (BFS)
A

CB

E F

G

D

H

Output: A B C D E F G

62

Graph traversal: Breadth-first traversal (BFS)
A

CB

E F

G

D

H

Output: A B C D E F G H

63

Graph traversal: Breadth-first traversal (BFS)

q

0

1 2 3

4 5

6

7

● Queue
● A list to store the visited

nodes

A

CB

E F

G

D

H

visited

64

Graph traversal: Breadth-first traversal (BFS)

Start by a node (for example, vertex=0) ,
and put it into the queue

0

1 2 3

4 5

6

7

A

CB

E F

G

D

H

0

1 2 3

4 5

7

A

0q

65

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:
1. Remove the head from the queue
2. Print it and save it into the visited

list

output:

A

CB

E F

G

D

H

0

1 2 3

4 5

6

7

V=0

A

0

0

q

0visited

Graph traversal: Breadth-first traversal (BFS)

A

q

B C D

While the queue is not empty, repeat:
1. Remove the head from the queue
2. Print it and save it into the visited

list
3. Get its adjacent nodes and put

them into the queue (only not
visited)

A

CB

E F

G

D

H

0

1 2 3

4 5

6

7

1 2 3

B C D

Graph traversal: Breadth-first traversal (BFS)
While the queue is not empty, repeat:
1. Remove the head from the queue
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into

the queue (only not visited)

A

CB

E F

G

D

H

0

1 2 3

4 5

6

7

q

BB

E F
B (1) has as adjacent nodes: E(4), F (5)

1 2 3 4 5

output:

V=1

0 1

0 1visited

Graph traversal: Breadth-first traversal (BFS)

A

CB

E F

G

D

H

0

1 2 3

4 5

6

7

q

C(2) has no adjacent nodes

2 3 4 5

C

output:

V=2

0 1 2

0 1 2visited

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them

into the queue (only not visited)

Graph traversal: Breadth-first traversal (BFS)

A

CB

E

G

D

H

0

1 2 3

4 5

6

7

q

D(3) has one only adjacent node, F(5), which is
already in the queue

3 4 5

D

F

output:

V=3

0 1 2 3

0 1 2 3visited

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them

into the queue (only not visited)

Graph traversal: Breadth-first traversal (BFS)

A

CB

E

G

D

H

0

1 2 3

4 5

6

7

q

E(4) has one only adjacent node, G(6)

4 5 6
E

G

F

output:

V=4

0 1 2 3 4

0 1 2 3 4visited

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them

into the queue (only not visited)

Graph traversal: Breadth-first traversal (BFS)

A

CB

E

G

D

H

0

1 2 3

4 5

6

7

q

F(5) does not have any adjacent node

5 6F

output:

V=5

0 1 2 3 4 5

0 1 2 3 4 5visited:

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them

into the queue (only not visited)

Graph traversal: Breadth-first traversal (BFS)

A

CB

E

G

D

H

0

1 2 3

4 5

6

7

q

G(6) has one only adjacent node, H(7)

6 7
F

G

H
output:

V=6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them

into the queue (only not visited)

visited:

Graph traversal: Breadth-first traversal (BFS)

A

CB

E

G

D

H

0

1 2 3

4 5

6

7

q

H(7) does not have any adjacent node

7
F

H

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them

into the queue (only not visited)∑

output:

V=7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7visited

Graph traversal: Breadth-first traversal (BFS)

A

CB

E

G

D

H

0

1 2 3

4 5

6

7

q

The queue is empty and all the nodes have already
visited!!!

F

output: 0 1 2 3 4 5 6 7

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them

into the queue (only not visited)∑

Graph traversal: Breadth-first traversal (BFS)
Algorithm bst(vertex):

q=Queueu() #queue for adjacent vertices
visited=[]
q.enqueue(vertex)
while q.isEmpty()==False:

current=q.dequeue()
print(current)
visited.append(current)
adjLst=getAdjacents(current)
for v in adjLst:

if v not in visited:
q.enqueue(v)

Index

76

● Introduction to Graphs
● Graph properties
● Graph representation:

○ Adjacency Matrix.
○ Adjacency List.

● Graph Traversal
○ Breadth-first Traversal
○ Depth-first Traversal

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H

Select a node and go forward as far as
possible along a branch, if not then,
backtrack

Graph traversal: Depth-first traversal (BFS)

Select a node and go forward as far as
possible along a branch, if not then,
backtrack

A

CB

E F

G

D

H Output: A,

Graph traversal: Depth-first traversal (BFS)

Select a node and go forward as far as
possible along a branch, if not then,
backtrack

Output: A,B

A

CB

E F

G

D

H

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H

Select a node and go forward as far as
possible along a branch, if not then,
backtrack

Output: A, B, E

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H, F, C

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H, F, C, D

Graph traversal: Depth-first traversal (BFS)
A

CB

E F

G

D

H Output: A, B, E, G, H, F, C, D

D has an adjacent node F, which is
visited.
We have finished because all nodes are
already visited!!!

Graph traversal: Depth-first traversal (BFS)

Algorithm depth(vertex, visited):
print(vertex)
visited.append(vertex)
for v in getAdjacents(vertex):

if v not in visited[v]:
depth(v,visited)

Note: visited is a list to store the nodes that we
visit.

