Universidad

ucdm | Carlos il
de Madrid

Grado en Ciencia e Ingenieria de
Datos, 2018-2019

I Unit 6. Graphs

Algorithms and Data Structures (ADS)

Author: Isabel Segura-Bedmar

Index

e Introduction to Graphs
e Graph properties
e Graph representation:
o Adjacency Matrix.
o Adjacency List.
e Graph Traversal

Introduction to Graphs

Linear data structures:

Arra?

—_— —

O 1 8§ 3 % & 6

y A

StacKk

Linvked List

J

Quewe

Introduction to Graphs

Non-linear data structures:

s
Y
O O
/
O

Introduction to Graphs

Non-linear data structures:

Nodes or vertices

®
G
O\\Q/

G-nrapk.

No rules for connections

Index

e Introduction to Graphs
e Graph properties
e Graph representation:
o Adjacency Matrix.
o Adjacency List.
e Graph Traversal

Graph properties

Graph:

A graph G is an ordered pair of a
set V of vertices and a set E of
edges

G=(V,E)

—CQO
3
| QT

Graph properties

/75 = How can we represent an edge?

V={v1,v2, v3, v4, v5, v6, v7, v8}

Graph properties

Types of edges:

" 9

W Vv

undivected

o %)

W \4

Airected

{U,V} ={V,u}

(u,v)!=(v,u) if ul=v

Graph properties

directed vs. undirected

a directed graph

(digraph)

—O
A I

O O
\
o\\\g/

an undirected graph

Graph properties

vai Ve
/Q Y
V3 \ Cévs\ - IVl =number of vertices
\ VQ / ()" IEl =number of edges
v*Q\xQ{

V={v1,v2, v3, v4, v5, vo, v/, v8}
E={{v1, v2}, {v1, v3}, {v1, v4}{v2,v5}, {v2,vG},
{v3,v7}, {v4,8}, {v5,v8},{v6o,v8}, {v/,6v8}}

IVl =8, IEI=10

l

Graph properties

Social Network (undirected graph)

[César [-]\

Leti 1 | Ana_|

12

Graph properties

[César [e]\

Leti 1 _Ana_|
David |

Diego |— Fede |

|sabel Moni

[Chus

Fran]

| Tom | [Pablo |

How to suggest some

V'3 v new friends to Isabel?

13

Graph properties

[Juan]\[]

14

Graph properties

Chus
/\ ‘{ Fran |

| Tom | [Pablo |

Find all nodes having length of shortest path
from Isabel equal to 2

15

Graph properties

World Wide Web (it's a directed graph)

}///[PageE]
PageD l PageE has a link to PageF
PageC PageG

PageF

PageH

Pages as vertices (have a unique URL)

16

Graph properties

UC3M Campuses (distance in kilometers)

35
Leganés 10
45
_ 41
Aranjuez
14
48 13
Pta Colmenarejo
Toledo)
|

17 82 weighted graph

Getafe

Graph properties
Type of edges

7\ When are they necessary?

18

Graph properties

World Wide Web

PageB
PageA
PageE

PageD

PageF A

A web page may contain a link to itself

19

Graph properties
Type of edges Multi-edge (parallel edges)

\/ \ g
\l/ (//

Sevilla

Madrid

20

Graph properties

e Loops and parallel edges lead to complicate graph
algorithms
e A graphis simple if it has no loops or parallel edges.

21

Graph properties

What is the maximum possible number of
o o edges in a simple directed graph?

VI =4
@L\ @ |E| = 0 (minimum)
VI =4

(C. (D |El = 12 (maximum)

If /VV/ = n, each vertex may have n-1 edges.
Therefore, 0<=/E/<=n(n-1), if directed

22

Graph properties

What is the maximum possible number of
o o edges in a simple undirected graph?

—_—

V] =4

-
|E| = 0 (minimum)

S A®
V] =4
(C \@ |E| = 6 (maximum)

If /VV/ = n, each vertex may have n-1 edges.
Therefore, 0<=/E/<=n(n-1)/2, if directed

23

Graph properties

e A graph is dense if the number of its edges is close
to its maximum possible number (= |V]?)

24

Graph properties

e A graph is sparse if the number of its edges is close
to its number of vertices (=|V|)

2
D

25

Graph properties

e Knowing if a graph is dense or sparse can help us to
select the most appropriate data structure to represent
it.

D

sparse

26

Graph properties

e Path is a sequence of vertices where each adjacent
pair is connected by an edge

<A,B,F.E,G>

A B ‘:: @

C D

It is a a simple path
(vertices are not repeated)

27

Graph properties

<A.B.F.E.G,F.E> This is not a gimple path (two
repeated vertices and one edge)

28

Graph properties

e Agraphis strongly connected if there is a path from
any vertex to any other vertex.

C D

strongly connected Weakly connected

29

Graph properties

e Simple cycle is a close walk with no repetition other
than start and end.

30

Graph properties

Acyclic graph is a graph with no cycles.

(A= B B

E

(© C D

Undirected acyclic graph directed acyclic graph (DAG)

31

Index

e Introduction to Graphs

e Graph properties

e Graph representation:
o Adjacency Matrix.
o Adjacency List.

e Graph Traversal

32

Graph representation

@ \B How can we create and store
a graph in computer
memory?

C D

o o
o

/\/—/
«

G=(V,E), V vertices, E edges

33

Index

e Introduction to Graphs

e Graph properties

e Graph representation:
o Adjacency Matrix.
o Adjacency List.

e Graph Traversal

34

Graph representation: Adjacency Matrix

@ \B 0 A
"B

C D > C
Vertexlist s'p

‘' E

We can use a Python list to store the vertices. 5 F

Each vertex is represented by an index.

35

Graph representation: Adjacency Matrix

@

Mij= —<

1’

0,

36

if {i, j} is an edge

otherwise

0

1

2

3

N

o

O O w

o O

o O

o o O O

M m O O

o O O

Graph representation: Adjacency Matrix

0O 1 2 3 4
o

5
A © 0
B 0
2(C C 2 1
3 Dl 3 0
° 4 E| 4|0
5 F 5 0

undirected graph
Mij = Mji

37

Graph representation: Adjacency Matrix
o 1 2

N
3
3

O O

M m O O
8

Representation of weighted graph

38

Graph representation: Adjacency Matrix

0 0 1 2 3 4 5

A Al 011000

(B) '(1[0 01 10

C C “100/00 1

D *0/{10/0 10

° ‘' 4010100

VI=n >'F >00 1000
Operations: - Time complexity

Finding adjacent nodes O(n)
39

Graph representation: Adjacency Matrix

0 1 o 1 2 3 5
A A 0 1/1]0 0
B 1001 0
2(C C 21000 1
D] *'01 00 0
- ° “'El 4101101 0
>'F| 200 10 0

Operations: Time complexity

Checking if two given 0(1) po
nodes are adjacent (M(1,3)?) @(o)

40

Graph representation: Adjacency Matrix

0
(A A 011000
B '"1001 10
2(C cC “100/00 1
Dl 010010
> ‘'E] 010100
>F >00 1000

Space complexity:
If |V]| =n, O(n?)

41

Graph representation: Adjacency Matrix

e In terms of time complexity, adjacency matrix is an
efficient data structure.

e However, in terms of space complexity, it is too costly.

e Adjacency matrix is a good representation when n? is
small or the graph is dense.

e However, most real graphs are sparse (for example,
WWW).

42

Graph representation: Adjacency Matrix

, [Juan]\ [Tom
[Cesar] . Lot]< 1 [Ana Chus
‘ ' David |

Isabel ——{ Moni
[sabe ~ Moni } :Diego —[—] [Pablo}

If [V] = 10° space= 10"8

Suppose avg. number of friends = 1000
IE| = (10°*10%)/2 = 10'%/2<< 10"®

43

Index

e Introduction to Graphs

e Graph properties

e Graph representation:
o Adjacency Matrix.
o Adjacency List.

e Graph Traversal

44

Graph representation: Adjacency Matrix

|V|=6, matrix=6x6

Adjacent
vertices
for B?

45

O -~ O OO

- OO0 OO —

1
0
0
1
1
0

(en BN« BEEEGN « B BEN [N -
O O -

List of size 6

Graph representation: Adjacency List

A

Connections for B:

ol 1 2 |[3]|[a

&)

100110

Suppose Facebook has 10° users
dimension of row is 10°

If B has 1000 friends:
Numbers of 1;: 1000 =1 KB
Numbers of 0: 10°- 1000 =1 GB

46

Graph reprqsentation: Adjacency List

(A-

2(C

Connections for B:

of 1 2
3(D 100 10
You can use:
0 a) A Python List, or
Python List b) Alinked List Linked List
0 34 1 0 4 None

47

, Graph representation: Adjacency List
1

3 olA 0/12
"B 1034
> 3(D
2 C 205
5 > D 314
‘1 E 413
> F 52

Adjacency list can be represented as a list of lists

48

, Graph representation: Adjacency List

Adjacency list
= List of Linked Lists

49

1

0
1

2

1

_ =

2

None

0

_ =

3

0

None

None

S

None

None

None

Graph representation: Adjacency List
0 (1,5)] (21)

11(05) (36) (4,9

2101 G.1) Adjacency list
(weighted graph)

3/ (1.6) (48)
41 (1,9 | (3,8)
5/ (2.11)

Each adjacent vertex is represented with a pair (i,j) where i is the
index of the vertex and j the related weight.

50

Graph representation: Matrix versus List
2 3 4 5

0 1

Operations:

v/ adjacent nodes for i?

v (i,j) is an edge?

51

=\

O O O - -

0 1

0

0

W b O W DN

- O 0O OO -
O -~ O O

O O -~ O -0

O O O -~ 0O O

—_ = 2 OO -

Graph representation: Matrix versus List

0 01 2 3 4 5
1 000/1/1/0/0/|0 011 2
111/00{1/1 0 10 3
5 3 2/11/0/0/0/0 1 205
30010010 3.1 4
0 4/0{1/0/1/0/0 4113
5 0/0[{1/0/0/0 5 1
Space = O(n?) Space = O(e)

Most real graphs are sparse (|E|=|V|<<|V|?)

52

Graph representation

e Most real graphs are sparse (|E|= [V|<<|V]|?)

e Adjacency matrix, space complexity O(|V|?), time
complexity O(|V]|) (sometimes O(1)). It is a good
solution when the graph is dense or n?is small.

e Adjacency list, space complexity: O(|E|) <<O(|V|?) (if
graph is sparse). Time complexity: O(|V])

53

Index

e Introduction to Graphs
e Graph properties
e Graph representation:
o Adjacency Matrix.
o Adjacency List.
e Graph Traversal
o Breadth-first Traversal
o Depth-first Traversal

54

Graph traversal

Graph traversal
Visiting all the nodes of the graph

1) Breadth-first traversal (BFS)
2) Depth-first traversal (DFS)

Graph traversal: Breadth-first traversal (BFS)

|dea: visit nodes in layers (levels). It's
similar to Level-order traversal in trees

Graph traversal: Breadth-first traversal (BFS)

Output: A

Graph traversal: Breadth-first traversal (BFS)

Output: ABCD

A

D

%\é

59

Graph traversal: Breadth-first traversal (BFS)

Output: ABCDEF

60

Graph traversal: Breadth-first traversal (BFS)

Output: ABCDEFG

Graph traversal: Breadth-first traversal (BFS)

Output: ABCDEFGH

Graph traversal: Breadth-first traversal (BFS)

e Queue
e Alist to store the visited
nodes

q

visited

Graph traversal: Breadth-first traversal (BFS)

Start by a node (for example, vertex=0) ,
3 and put it into the queue

D

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:
1. Remove the head from the queue
2. Printit and save it into the visited

list

visited |0

output: |0

Graph traversal: Breadth-first traversal (BFS)

0
While the queue is not empty, repeat:
1 , ; 1. Remove the head from the queue
2. Print it and save it into the visited
B (C (D list

3. Getits adjacent nodes and put
them into the queue (only not
visited)

q123

Graph traversal: Breadth-first traversal (BFS)

0 While the queue is not empty, repeat:

1. Remove the head from the queue

2. Print it and save it into the visited list
3 3. Getits adjacent nodes and put them into
the queue (only not visited)

V=1 (q 2 3 4 5

B (1) has as adjacent nodes: E(4), F (5)

visited 0 1

output: |0 1

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:
1. Remove the head from the queue.
2. Printit and save it into the visited list
3. Getits adjacent nodes and put them
into the queue (only not visited)

V=2 ¢q 3 4 5

C(2) has no adjacent nodes

visited 01 2

output: |0 1 2

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
Print it and save it into the visited list
Get its adjacent nodes and put them
into the queue (only not visited)

SEN

D(3) has one only adjacent node, F(5), which is
already in the queue

visited 01 2 3

output: |0 1 2 3

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
Print it and save it into the visited list
Get its adjacent nodes and put them
into the queue (only not visited)

SEN

5 6

E(4) has one only adjacent node, G(6)

visited 01 2 3 4

output: |0 1 2 3 4

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

Remove the head from the queue.

. Print it and save it into the visited list

3. Getits adjacent nodes and put them
into the queue (only not visited)

N —

V=5 ¢ 6

F(5) does not have any adjacent node

visited: 01 2 3 4 5

output: 0O 1 2 3 4 5

Graph traversal: Breadth-first traversal (BFS)

—

visited:

output:

While the queue is not empty, repeat:

Remove the head from the queue.
Print it and save it into the visited list
Get its adjacent nodes and put them
into the queue (only not visited)

I

G(6) has one only adjacent node, H(7)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

Remove the head from the queue.

. Print it and save it into the visited list

3. Getits adjacent nodes and put them
into the queue (only not visited))

N —

H(7) does not have any adjacent node

visited O 1 2 3 4 5 6 7

output: 01 2 3 4 5 6 7

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
2. Printit and save it into the visited list
3. Getits adjacent nodes and put them
into the queue (only not visited))
q

The queue is empty and all the nodes have already
visited!!!

output: 01 2 3 4 5 6 7

Graph traversal: Breadth-first traversal (BFS)
Algorithm bst (vertex) :

g=Queueu () #gueue for adjacent vertices
visited=[]

J.enqueue (vertex)

while g.i1sEmpty ()==False:

current=qg.dequeue ()
print (current)
visited.append (current)
adjLst=getAdjacents (current)
for v 1n adjlLst:
1f v not 1n visited:
g.enqueue (V)

Index

e Introduction to Graphs
e Graph properties
e Graph representation:
o Adjacency Matrix.
o Adjacency List.
e Graph Traversal
o Breadth-first Traversal
o Depth-first Traversal

76

Graph traversal: Depth-first traversal (BFS)

Select a node and go forward as far as
@ (‘9 @ possible along a branch, if not then,
backtrack

Graph traversal: Depth-first traversal (BFS)

| Select a node and go forward as far as
@ (‘9 @ possible along a branch, if not then,
backtrack

Output: A,

Graph traversal: Depth-first traversal (BFS)

| Select a node and go forward as far as
@ (‘9 @ possible along a branch, if not then,
backtrack

Output: A,B

Graph traversal: Depth-first traversal (BFS)

| Select a node and go forward as far as
@ (‘9 @ possible along a branch, if not then,
backtrack

Output: A, B, E

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)

Output: A, B, E, G, H, F

Graph traversal: Depth-first traversal (BFS)

Output: A,B,E, G, H, F, C

Graph traversal: Depth-first traversal (BFS)

Output: A,B,E, G, H,F,C,D

Graph traversal: Depth-first traversal (BFS)

D has an adjacent node F, which is
visited.

We have finished because all nodes are
already visited!!!

Output: A,B,E, G, H,F,C,D

Graph traversal: Depth-first traversal (BFS)

Algorithm depth(vertex, visited) :
print (vertex)
visited. append (vertex)
for v in getAdjacents (vertex) :
1f v not in visitedl[v]:
depth(v,visited)

Note: visited 1s a list to store the nodes that we
visit.

