\section*{uc3m	Universidad
Carlos III	de Madrid}

Grado en Ciencia e Ingeniería de Datos, 2018-2019

Unit 6. Graphs

Algorithms and Data Structures (ADS)

Index

- Introduction to Graphs
- Graph properties
- Graph representation:
- Adjacency Matrix.
- Adjacency List.
- Graph Traversal

Introduction to Graphs
Linear data structures:

Array

Stack

Introduction to Graphs

Non-linear data structures:

Introduction to Graphs

Non-linear data structures:
Nodes or vertices

Graph
No rules for connections

Index

- Introduction to Graphs
- Graph properties
- Graph representation:
- Adjacency Matrix.
- Adjacency List.
- Graph Traversal

Graph properties

Graph:

A graph G is an ordered pair of a set V of vertices and a set E of edges

Graph

Graph properties

How can we represent an edge?

$$
V=\{v 1, v 2, v 3, v 4, v 5, v 6, v 7, v 8\}
$$

Graph properties

Types of edges:

$$
\{u, v\}=\{v, u\}
$$

undirected

$$
(u, v)!=(v, u) \text { if } u!=v
$$

Graph properties

directed vs. undirected

a directed graph (digraph)

an undirected graph

Graph properties

IVI =number of vertices
 $|E|=n u m b e r ~ o f ~ e d g e s ~$

$$
\begin{aligned}
\mathrm{V}= & \{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5, \mathrm{v} 6, \mathrm{v} 7, \mathrm{v} 8\} \\
\mathrm{E}= & \{\{\mathrm{v} 1, \mathrm{v} 2\},\{\mathrm{v} 1, \mathrm{v} 3\},\{\mathrm{v} 1, \mathrm{v} 4\},\{\mathrm{v} 2, \mathrm{v} 5\},\{\mathrm{v} 2, \mathrm{v} 6\}, \\
& \{\mathrm{v} 3, \mathrm{v} 7\},\{\mathrm{v} 4, \mathrm{v} 8\},\{\mathrm{v} 5, \mathrm{v} 8\},\{\mathrm{v} 6, \mathrm{v} 8\},\{\mathrm{v} 7, \mathrm{v} 8\}\}
\end{aligned}
$$

$$
|\mathrm{VI}=8, \mathrm{IE}|=10
$$

Graph properties

Social Network (undirected graph)

Graph properties

How to suggest some new friends to Isabel?

Graph properties

Graph properties

Find all nodes having length of shortest path from Isabel equal to 2

Graph properties

World Wide Web (it's a directed graph)

Pages as vertices (have a unique URL)

Graph properties

UC3M Campuses (distance in kilometers)

Graph properties

Type of edges

When are they necessary?

Graph properties

World Wide Web

A web page may contain a link to itself

Graph properties

Type of edges Multi-edge (parallel edges)

Graph properties

- Loops and parallel edges lead to complicate graph algorithms
- A graph is simple if it has no loops or parallel edges.

Graph properties

What is the maximum possible number of edges in a simple directed graph?

If $/ \mathrm{V} /=\mathrm{n}$, each vertex may have $\mathrm{n}-1$ edges.
Therefore, $0<=/ E /<=n(n-1)$, if directed

Graph properties

What is the maximum possible number of edges in a simple undirected graph?

$$
\begin{aligned}
& |V|=4 \\
& |E|=0 \text { (minimum) } \\
& |V|=4 \\
& |E|=6 \text { (maximum) }
\end{aligned}
$$

If $/ \mathrm{V} /=\mathrm{n}$, each vertex may have $\mathrm{n}-1$ edges.
Therefore, $0<=/ E /<=n(n-1) / 2$, if directed

Graph properties

- A graph is dense if the number of its edges is close to its maximum possible number $\left(\approx|V|^{2}\right)$

Graph properties

- A graph is sparse if the number of its edges is close to its number of vertices $(\approx|V|)$

Graph properties

- Knowing if a graph is dense or sparse can help us to select the most appropriate data structure to represent it.

dense

sparse

Graph properties

- Path is a sequence of vertices where each adjacent pair is connected by an edge
<A,B,F,E,G>

It is a a simple path
(vertices are not repeated)

Graph properties

$<A, B, E, E, G, E, E \gg \begin{aligned} & \text { This is not a simple path (two } \\ & \text { repeated vertices and one edge) }\end{aligned}$

Graph properties

- A graph is strongly connected if there is a path from any vertex to any other vertex.

strongly connected

Weakly connected

Graph properties

- Simple cycle is a close walk with no repetition other than start and end.

Graph properties

Acyclic graph is a graph with no cycles.

Undirected acyclic graph

directed acyclic graph (DAG)

Index

- Introduction to Graphs
- Graph properties
- Graph representation:
- Adjacency Matrix.
- Adjacency List.
- Graph Traversal

Graph representation

$G=(\mathrm{V}, \mathrm{E}), \mathrm{V}$ vertices, E edges

Index

- Introduction to Graphs
- Graph properties
- Graph representation:
- Adjacency Matrix.
- Adjacency List.
- Graph Traversal

Graph representation: Adjacency Matrix

	0	1	2	3	4	5
0	∞	5	1	∞	∞	∞
1	5	∞	∞	6	9	∞
2	1	∞	∞	∞	∞	7
3	∞	6	∞	∞	8	∞
4	∞	9	∞	8	∞	∞
5	∞	∞	7	∞	∞	∞

Representation of weighted graph

Graph representation: Adjacency Matrix

Finding adjacent nodes
O(n)

Graph representation: Adjacency Matrix

Operations:
Checking if two given
nodes are adjacent ($\mathrm{M}(1,3$)?)

Graph representation: Adjacency Matrix

 If $|V|=n, \quad O\left(n^{2}\right)$

Graph representation: Adjacency Matrix

- In terms of time complexity, adjacency matrix is an efficient data structure.
- However, in terms of space complexity, it is too costly.
- Adjacency matrix is a good representation when n^{2} is small or the graph is dense.
- However, most real graphs are sparse (for example, WWW).

Graph representation: Adjacency Matrix

If $|\mathrm{V}|=10^{9}$ space $=10^{18}$
Suppose avg. number of friends ≈ 1000
$|E|=\left(10^{9 *} 10^{3}\right) / 2=10^{12} / 2^{\ll} 10^{18}$

Index

- Introduction to Graphs
- Graph properties
- Graph representation:
- Adjacency Matrix.
- Adjacency List.
- Graph Traversal

Graph representation: Adjacency Matrix

Adjacent vertices for B?

0	1	2	3	4	5

100110 Lstof size 6

Graph representation: Adjacency List

(F) 5 Suppose Facebook has 10^{9} users
dimension of row is 10^{9} dimension of row is 10^{9}

If B has 1000 friends:
Numbers of 1 : $1000 \approx 1 \mathrm{~KB}$
Numbers of 0: $10^{9}-1000 \approx 1$ GB

${ }_{0}$ Graph repreesentation: Adjacency List

Python List
You can use:
a) A Python List, or
b) A Linked List

Linked List

$$
034
$$

${ }_{0}$ Graph representation: Adjacency List

Adjacency list can be represented as a list of lists

${ }_{0}$ Graph representation: Adjacency List

Adjacency list
= List of Linked Lists

52 None

Graph representation: Adjacency List

Each adjacent vertex is represented with a pair (i,j) where i is the index of the vertex and j the related weight.

Graph representation: Matrix versus List

Operations:
adjacent nodes for i?
$\mathrm{O}(\mathrm{n})$
(i, j) is an edge?
$\mathrm{O}(1)$
$\mathrm{O}(1)$
$\mathrm{O}(\mathrm{n})$

Graph representation: Matrix versus List

Space $=O\left(n^{2}\right)$

0	1	2
1	0	3
	4	
2	0	5
	1	4
4	1	3
5	1	

Space $=O(e)$

Most real graphs are sparse ($|\mathrm{E}| \approx|\mathrm{V}| \ll|\mathrm{V}|^{2}$)

Graph representation

- Most real graphs are sparse ($|\mathrm{E}| \approx|\mathrm{V}| \ll|\mathrm{V}|^{2}$)
- Adjacency matrix, space complexity $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$, time complexity $\mathrm{O}(|\mathrm{V}|)$ (sometimes $\mathrm{O}(1)$). It is a good solution when the graph is dense or n^{2} is small.
- Adjacency list, space complexity: $\mathrm{O}(|\mathrm{E}|) \ll \mathrm{O}\left(|\mathrm{V}|^{2}\right)$ (if graph is sparse). Time complexity: $\mathrm{O}(|\mathrm{V}|)$

Index

- Introduction to Graphs
- Graph properties
- Graph representation:
- Adjacency Matrix.
- Adjacency List.
- Graph Traversal
- Breadth-first Traversal
- Depth-first Traversal

Graph traversal

Visiting all the nodes of the graph

Traveling Salesman Problem (TSP)

Graph traversal

Visiting all the nodes of the graph

1) Breadth-first traversal (BFS)
2) Depth-first traversal (DFS)

Graph traversal: Breadth-first traversal (BFS)

Idea: visit nodes in layers (levels). It's similar to Level-order traversal in trees

Graph traversal: Breadth-first traversal (BFS)

Output: A

Graph traversal: Breadth-first traversal (BFS)

Output: A B C D

Graph traversal: Breadth-first traversal (BFS)

Output: A B C D E F

Graph traversal: Breadth-first traversal (BFS)

Output: A B CDEFG

Graph traversal: Breadth-first traversal (BFS)

Output: A B CDEFGH

Graph traversal: Breadth-first traversal (BFS)

Graph traversal: Breadth-first traversal (BFS)

Start by a node (for example, vertex=0), and put it into the queue

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat: 1. Remove the head from the queue
2. Print it and save it into the visited list
$v=0 \quad$ q
visited 0
output: 0

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into the queue (only not visited)
q 123

Graph traversal: Breadth-first traversal (BFS)

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into the queue (only not visited)
$\mathbf{V}=\mathbf{2} \quad \mathbf{9} \begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$\mathrm{C}(2)$ has no adjacent nodes
visited $\quad \begin{array}{lll}0 & 1 & 2\end{array}$
output:
012

Graph traversal: Breadth-first traversal (BFS)

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into the queue (only not visited)

$\mathbf{V}=4 \quad \mathbf{q} \quad$| 4 | 5 | 6 |
| :--- | :--- | :--- |

$E(4)$ has one only adjacent node, $G(6)$
visited
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
output:
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into the queue (only not visited)
$\mathrm{V}=\mathbf{5} \quad \mathbf{q} \quad 5 \quad 6$

$\mathrm{F}(5)$ does not have any adjacent node visited: $\quad \begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$ output: \quad| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into the queue (only not visited)

V=6 $\quad \mathbf { q } \longdiv { 6 \quad 7 }$
$G(6)$ has one only adjacent node, $\mathrm{H}(7)$

visited: | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

output: $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into the queue (only not visited) Σ

V=7 \quad q $\longdiv { 7 }$
$H(7)$ does not have any adjacent node

Graph traversal: Breadth-first traversal (BFS)

While the queue is not empty, repeat:

1. Remove the head from the queue.
2. Print it and save it into the visited list
3. Get its adjacent nodes and put them into the queue (only not visited) Σ
q

The queue is empty and all the nodes have already visited!!!

$$
\text { output: } \quad \begin{array}{lllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

Graph traversal: Breadth-first traversal (BFS)

Algorithm bst(vertex) :

```
q=Queueu() #queue for adjacent vertices
visited=[]
q.enqueue(vertex)
while q.isEmpty()==False:
    current=q.dequeue()
    print(current)
    visited.append(current)
    adjLst=getAdjacents(current)
    for v in adjLst:
    if v not in visited:
        q.enqueue(v)
```


Index

- Introduction to Graphs
- Graph properties
- Graph representation:
- Adjacency Matrix.
- Adjacency List.
- Graph Traversal
- Breadth-first Traversal
- Depth-first Traversal

Graph traversal: Depth-first traversal (BFS)

Select a node and go forward as far as possible along a branch, if not then, backtrack

Graph traversal: Depth-first traversal (BFS)

Graph traversal: Depth-first traversal (BFS)

Algorithm depth(vertex, visited) :
print (vertex)
visited.append (vertex)
for v in getAdjacents (vertex) :
if v not in visited[v]: depth(v,visited)

Note: visited is a list to store the nodes that we visit.

