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Analysis of Algorithms
● An algorithm is a set of steps (instructions) for solving 

a problem.
● Must be correct!!!.
● Must be efficient!!!
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Analysis of Algorithms

● A problem can have several different solutions  
(algorithms) 

● Goal:  choose the most efficient algorithm
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Analysis of Algorithms

● Study the performance of algorithms:
○ time complexity.
○ space complexity.

● Compare algorithms
● Focus on time:  How to estimate the time required for 

an algorithm?
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Empirical Analysis of Algorithms
1. Write the program
2. Include instructions to measure the running time
3. Run the program with inputs of different sizes
4. Plot the results 
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Empirical Analysis of Algorithms
Given a number n, develop a method to sum from 1 to 
n.

1. Write the program: 
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Empirical Analysis of Algorithms
2. Include instructions to measure the running time
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Empirical Analysis of Algorithms
3. Run the program with inputs of different sizes
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Empirical Analysis of Algorithms
4. Plot the results
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Empirical Analysis of Algorithms
● When you need to show very large ranges (like in the 

previous example), use a  Log-log plot 
● Log–log plot uses logarithmic scales on both the 

horizontal and vertical axes.
●  How can you make a log-log graph in excel? 

○ In your XY (scatter) graph, double-click the scale of 
each axis.

○ In the Format Axis box, select the Scale tab, and 
then check Logarithmic scale
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Empirical Analysis of Algorithms
Are there other algorithms that solve this problem?
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Empirical Analysis of Algorithms
The Gauss’s solution for adding 
numbers from 1 to n

Nota: You can find an easy explication at :
http://mathandmultimedia.com/2010/09/15/sum-first-n-positive-integers/
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Empirical Analysis of Algorithms
● Now, you can implement the Gauss’s solution
● Run the program for different values of n and measure 

the running time…
● Then, plot the result and compare it with the previous 

solution.
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Empirical Analysis of Algorithms

n time (ns)

100 436

1.000 371

10.000 259

100.000 298

1.000.000 290

10.000.000 250

100.000.000 233

1.000.000.000 222
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Empirical Analysis of Algorithms
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Empirical Analysis of Algorithms
● However, some disadvantages:

○ You need to implement the algorithms.
○ Same environment to compare two algorithms.
○ Results may not be indicative for other inputs 
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○ Running Time function (T(n)).
○ Big-O function



Theoretical Analysis of Algorithms
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● Pseudocode
● Independent of the hardware/software environment
● Takes into account all possible inputs
● Define T(n), running time function, which represents 

the running time of an algorithm, as a function of the 
input size
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● Running time function T(n)
○ T(n)= number of operations executed by an 

algorithm to process an input of size n.

Theoretical Analysis of Algorithms
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● Primitive operations take constant amount of time: c. 
(We can assume c=1 ns)

● Examples:
○ Assigning a value to a variable: x=2
○ Indexing into an array: vector[3]
○ Returning from a method: return x
○ Evaluating an arithmetic expression: x+3
○ Evaluating a logical expression: 

■ node!=None and i<index

Theoretical Analysis of Algorithms
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● If your function has consecutive statements:

B1

B2

..

Bn

Just add the running times of those consecutive 
statements. T(n)=T(B1)+T(B2)+...+T(Bn)

Theoretical Analysis of Algorithms
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Algorithm swap(a,b) # operations

temp=a 1
 a=b 1
 b=temp 1

Example:

T(n) = 3*c = 3, (we assume c=1)
This algorithm requires 3 nano seconds,

 for an input of size n

Theoretical Analysis of Algorithms
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● The running time of a loop is the running time of the 
statements inside of that loop times the number of 
iterations.

Tfor(n) = (3n)*c = 3n, (we assume c=1)

The loop requires 3n nano seconds,
 for an input of size n

# operations

for i=1 to n n
total=total+n (1+1)*n

Theoretical Analysis of Algorithms
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● Time complexity of nested loops is equal to the number 
of times the innermost statement is executed. 

# operations

for i=1 to n n
for j=1 to n n
print(i*j) (1+1)n

T(n) = n + n *(3n)=3n^2+n

*n

Theoretical Analysis of Algorithms
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● If/Else: As only one of the statements (S1,S2,...Sn) will 
be executed, we must consider the worst case (the most 
costly in time)

If condition1:
S1

elif condition2:
  S2

...
else:

Sn

Tif-else(n)= max(T(S1),T(S2),...,T(Sn))

Theoretical Analysis of Algorithms
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● If/Else: 

Tif-else(n)= max(T(S1),T(S2))=3n+1

      # operations

if opc=0:    
x=0   #S1        T(S1)=1
else: 
 x=0

  for i=1 to n         T(S2)=1+n+2n=3n+1
 x=x+i

#S2

Theoretical Analysis of Algorithms
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● Running time functions allow us to compare algorithms, 
without implementing them

● Let us compare the running time functions for sumN 
and sumNGauss.

Theoretical Analysis of Algorithms
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Algorithm sumN(n) # operations

total=0 1

for i=1 to n n
total=total+n   2n

return total 1

Theoretical Analysis of Algorithms
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T(n) = (3n + 2)*c = 3n+2, (we assume c=1)
This algorithm requires 3n+2 nano seconds,

 for an input of size n

Algorithm sumN(n) # operations

total=0

for i=1 to n
total=total+n

return total

Theoretical Analysis of Algorithms
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T(n) = 4*c = 4, (we assume c=1)
This algorithm requires 4 nano seconds,

 for an input of size n

Algorithm sumNGauss(n) # operations

return n*(n+1)/2   1+1+1+1

Theoretical Analysis of Algorithms



Tsum(n)=3n+2
TGauss(n)=4
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Time requirements as a function of the problem 
size n

33

Theoretical Analysis of Algorithms
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What does T(n) depend on? Only depends on n?

Algorithm contains(data,x)
for c in data:

if c==x:
return False

     
     return False

Theoretical Analysis of Algorithms
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Algorithm contains(data,x)
for c in data:

if c==x:
return False

     
     return False

●  Size of data,
●  But also the value of x

Theoretical Analysis of Algorithms
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● Best-case:  the case that causes the minimum 
number of operations to be executed.

● Worst-case: the case that causes the maximum 
number of operations to be executed. 

● Average-case: a case that requires the average 
number of operations to be executed. To known this 
average number, we must take all possible inputs and 
calculate their running times. Them, we sum them and 
divided by the total number of inputs. 

Theoretical Analysis of Algorithms
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● The average case analysis is not easy to do in most 
of the practical cases and it is rarely done.

● Most of the times, we do worst case analysis to 
analyze algorithms. We guarantee an upper bound on 
the running time of an algorithm.

Theoretical Analysis of Algorithms
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Algorithm contains(data,x)
for c in data:

if c==x:
return False

     
     return False

●  Best case?
●  Worst case?

Theoretical Analysis of Algorithms
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Algorithm contains(data,x)
for c in data:

if c==x:
return False

     
     return False

●  Best case?: x is the first element
●  Worst case?: x is the last or does not exist

Theoretical Analysis of Algorithms
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Algorithm sumList(data)
total=0
for c in data:

total = total + c
     return total

● For some algorithms, all the cases are 
computationally same, i.e., there are no worst 
and best cases (T(n) will be 3n+2)

Theoretical Analysis of Algorithms
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● Running time depends on:
○ The computer on which the program is run
○ The compiler used to generate the program

● Find an approximation function for T(n), an upper bound 

Theoretical Analysis of Algorithms
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● Running time depends on:
○ The computer on which the program is run
○ The compiler used to generate the program

● We must propose an approximation function for T(n), an 
upper bound.

Theoretical Analysis of Algorithms
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● Suppose that you have two algorithms with the following 
running time functions:
○ T1(n)=3n3

○ T2(n)=3n3+2n2+3n+5

● What is the most efficient?

Theoretical Analysis of Algorithms
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T1(n)=3n3

T2(n)=3n3+2n2+3n+5 
What is the most efficient?

Theoretical Analysis of Algorithms
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Find an approximation function for T(n), an upper 
bound:
1. Find the fastest growing term.
2. Take out the coefficient.

Theoretical Analysis of Algorithms
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Find an approximation function for T(n), an upper 
bound:
1. Find the fastest growing term.
2. Take out the coefficient.

T1(n)=3n3      ->  3n3  

T2(n)=3n3+2n2+3n+5     ->  3n3  

Theoretical Analysis of Algorithms
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Find an approximation function for T(n), an upper 
bound:
1. Find the fastest growing term.
2. Take out the coefficient.

T1(n)=3n3      ->  3n3    ->  n3  

T2(n)=3n3+2n2+3n+5  ->  3n3   ->   n3  

Theoretical Analysis of Algorithms
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Theoretical Analysis of Algorithms
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notation name

O(1) constant

O(logn) logarithmic

O(n) linear

O(nlogn) linearithmic

O(n2) quadratic

O(nc) polynomial

O(cn) exponential

O(n!) factorial
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Theoretical Analysis of Algorithms



● Good news!!!: a small set of functions:
1 < log n < n < nlog n <n2 <n3<…<2n<n!
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Efficient orders-of-growth:

Order Name Description Example
1 Constant Independent 

of the input 
size

Remove the first 
element from a 
queue

Log2(n) Logarithmic Divide in half Binary search
n Linear Loop Sum of array 

elements
nLog2 (n) Linearithmic Divide and 

conquer
Mergesort, 
quicksort
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nLog2(n)

Log2(n)

1

n
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Efficient orders-of-growth:

Theoretical Analysis of Algorithms



Order Name Description Example
n2 Quadratic Double loop Add two matrices; 

bubble sort
n3 Cubic Triple loop Multiply two 

matrices
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Tractable orders-of-growth:

Theoretical Analysis of Algorithms



n3

n2
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Tractable orders-of-growth:

Theoretical Analysis of Algorithms



Order Name Description Example
kn Exponential Exhaustive 

search
Guess a 
password, 

n! Factorial Brute-force 
search

Enumerate all 
partitions of a set
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Intractable orders-of-growth:

Theoretical Analysis of Algorithms



n!

2n
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Intractable orders-of-growth:

Theoretical Analysis of Algorithms



Órdenes de Complejidad más comunes
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Some examples:

T(n) Big-O
n + 2 O(?)

½(n+1)(n-1) O(?)
3n+log(n) O(?)

n(n-1) O(?)
7n4+5n2+1 O(?)

Theoretical Analysis of Algorithms
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T(n) Big-O
n + 2 O(n)

½(n+1)(n-1) O(n2)
3n+log(n) O(n)

n(n-1) O(n2)
7n4+5n2+1 O(n4)

Theoretical Analysis of Algorithms
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More examples:

T(n) BigO
4 O(?)

3n+4 O(?)

5n²+ 27n + 1005 O(?)

10n³+ 2n² + 7n + 1 O(?)

n!+ n⁵ O(?)

Theoretical Analysis of Algorithms
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T(n) Big-O
4 O(1)

3n+4 O(n)

5n²+ 27n + 1005 O(n2)

10n³+ 2n² + 7n + 1 O(n3)

n!+ n⁵ O(n!)

Theoretical Analysis of Algorithms
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Example: Calculate its T(n) and BigO functions. 
Discuss the worst and best cases

Algorithm findMax(data)
max=-999999
for c in data:
if c>max then 
max=c

return max

Theoretical Analysis of Algorithms
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Example: Calculate its T(n) and BigO functions. 
Discuss the worst and best cases
Algorithm findMax(data)
max=-999999 #1
for c in data: #n

if c>max then #1*n
max=c #1*n

return max #1

Answer:

T(n)=3n+2, O(n)=1
There are no worst and best cases, all the elements of 
data must be visited

Theoretical Analysis of Algorithms


