
Unit 3.
Analysis of Algorithms

Algorithms and Data Structures (ADS)

Grado en Ciencia e Ingeniería de
Datos, 2018-2019

Author: Isabel Segura-Bedmar

Index

2

● Analysis of Algorithms
● Empirical Analysis of Algorithms
● Theoretical Analysis of Algorithms

Analysis of Algorithms
● An algorithm is a set of steps (instructions) for solving

a problem.
● Must be correct!!!.
● Must be efficient!!!

3

Analysis of Algorithms

● A problem can have several different solutions
(algorithms)

● Goal: choose the most efficient algorithm

4

Analysis of Algorithms

● Study the performance of algorithms:
○ time complexity.
○ space complexity.

● Compare algorithms
● Focus on time: How to estimate the time required for

an algorithm?

5

Index

6

● Analysis of Algorithms
● Empirical Analysis of Algorithms
● Theoretical Analysis of Algorithms

Empirical Analysis of Algorithms
1. Write the program
2. Include instructions to measure the running time
3. Run the program with inputs of different sizes
4. Plot the results

7

Empirical Analysis of Algorithms
Given a number n, develop a method to sum from 1 to
n.

1. Write the program:

8

Empirical Analysis of Algorithms
2. Include instructions to measure the running time

9

Empirical Analysis of Algorithms
3. Run the program with inputs of different sizes

10

Empirical Analysis of Algorithms
4. Plot the results

11 n

Ti
m

e
(n

s)

Empirical Analysis of Algorithms
● When you need to show very large ranges (like in the

previous example), use a Log-log plot
● Log–log plot uses logarithmic scales on both the

horizontal and vertical axes.
● How can you make a log-log graph in excel?

○ In your XY (scatter) graph, double-click the scale of
each axis.

○ In the Format Axis box, select the Scale tab, and
then check Logarithmic scale

12

Empirical Analysis of Algorithms
Are there other algorithms that solve this problem?

13

Empirical Analysis of Algorithms
The Gauss’s solution for adding
numbers from 1 to n

Nota: You can find an easy explication at :
http://mathandmultimedia.com/2010/09/15/sum-first-n-positive-integers/

14

Empirical Analysis of Algorithms
● Now, you can implement the Gauss’s solution
● Run the program for different values of n and measure

the running time…
● Then, plot the result and compare it with the previous

solution.

15

Empirical Analysis of Algorithms

n time (ns)

100 436

1.000 371

10.000 259

100.000 298

1.000.000 290

10.000.000 250

100.000.000 233

1.000.000.000 222

16

Empirical Analysis of Algorithms

n

Ti
m

e
(n

s)

17

Empirical Analysis of Algorithms
● However, some disadvantages:

○ You need to implement the algorithms.
○ Same environment to compare two algorithms.
○ Results may not be indicative for other inputs

18

Index

19

● Analysis of Algorithms
● Empirical Analysis of Algorithms
● Theoretical Analysis of Algorithms

○ Running Time function (T(n)).
○ Big-O function

Theoretical Analysis of Algorithms

20

● Pseudocode
● Independent of the hardware/software environment
● Takes into account all possible inputs
● Define T(n), running time function, which represents

the running time of an algorithm, as a function of the
input size

21

● Running time function T(n)
○ T(n)= number of operations executed by an

algorithm to process an input of size n.

Theoretical Analysis of Algorithms

22

● Primitive operations take constant amount of time: c.
(We can assume c=1 ns)

● Examples:
○ Assigning a value to a variable: x=2
○ Indexing into an array: vector[3]
○ Returning from a method: return x
○ Evaluating an arithmetic expression: x+3
○ Evaluating a logical expression:

■ node!=None and i<index

Theoretical Analysis of Algorithms

23

● If your function has consecutive statements:

B1

B2

..

Bn

Just add the running times of those consecutive
statements. T(n)=T(B1)+T(B2)+...+T(Bn)

Theoretical Analysis of Algorithms

24

Algorithm swap(a,b) # operations

temp=a 1
 a=b 1
 b=temp 1

Example:

T(n) = 3*c = 3, (we assume c=1)
This algorithm requires 3 nano seconds,

 for an input of size n

Theoretical Analysis of Algorithms

25

● The running time of a loop is the running time of the
statements inside of that loop times the number of
iterations.

Tfor(n) = (3n)*c = 3n, (we assume c=1)

The loop requires 3n nano seconds,
 for an input of size n

operations

for i=1 to n n
total=total+n (1+1)*n

Theoretical Analysis of Algorithms

26

● Time complexity of nested loops is equal to the number
of times the innermost statement is executed.

operations

for i=1 to n n
for j=1 to n n
print(i*j) (1+1)n

T(n) = n + n *(3n)=3n^2+n

*n

Theoretical Analysis of Algorithms

27

● If/Else: As only one of the statements (S1,S2,...Sn) will
be executed, we must consider the worst case (the most
costly in time)

If condition1:
S1

elif condition2:
 S2

...
else:

Sn

Tif-else(n)= max(T(S1),T(S2),...,T(Sn))

Theoretical Analysis of Algorithms

28

● If/Else:

Tif-else(n)= max(T(S1),T(S2))=3n+1

 # operations

if opc=0:
x=0 #S1 T(S1)=1
else:
 x=0

 for i=1 to n T(S2)=1+n+2n=3n+1
 x=x+i

#S2

Theoretical Analysis of Algorithms

29

● Running time functions allow us to compare algorithms,
without implementing them

● Let us compare the running time functions for sumN
and sumNGauss.

Theoretical Analysis of Algorithms

30

Algorithm sumN(n) # operations

total=0 1

for i=1 to n n
total=total+n 2n

return total 1

Theoretical Analysis of Algorithms

31

T(n) = (3n + 2)*c = 3n+2, (we assume c=1)
This algorithm requires 3n+2 nano seconds,

 for an input of size n

Algorithm sumN(n) # operations

total=0

for i=1 to n
total=total+n

return total

Theoretical Analysis of Algorithms

32

T(n) = 4*c = 4, (we assume c=1)
This algorithm requires 4 nano seconds,

 for an input of size n

Algorithm sumNGauss(n) # operations

return n*(n+1)/2 1+1+1+1

Theoretical Analysis of Algorithms

Tsum(n)=3n+2
TGauss(n)=4

Ti
m

e
(n

s)

Time requirements as a function of the problem
size n

33

Theoretical Analysis of Algorithms

34

What does T(n) depend on? Only depends on n?

Algorithm contains(data,x)
for c in data:

if c==x:
return False

 return False

Theoretical Analysis of Algorithms

35

Algorithm contains(data,x)
for c in data:

if c==x:
return False

 return False

● Size of data,
● But also the value of x

Theoretical Analysis of Algorithms

36

● Best-case: the case that causes the minimum
number of operations to be executed.

● Worst-case: the case that causes the maximum
number of operations to be executed.

● Average-case: a case that requires the average
number of operations to be executed. To known this
average number, we must take all possible inputs and
calculate their running times. Them, we sum them and
divided by the total number of inputs.

Theoretical Analysis of Algorithms

37

● The average case analysis is not easy to do in most
of the practical cases and it is rarely done.

● Most of the times, we do worst case analysis to
analyze algorithms. We guarantee an upper bound on
the running time of an algorithm.

Theoretical Analysis of Algorithms

38

Algorithm contains(data,x)
for c in data:

if c==x:
return False

 return False

● Best case?
● Worst case?

Theoretical Analysis of Algorithms

39

Algorithm contains(data,x)
for c in data:

if c==x:
return False

 return False

● Best case?: x is the first element
● Worst case?: x is the last or does not exist

Theoretical Analysis of Algorithms

40

Algorithm sumList(data)
total=0
for c in data:

total = total + c
 return total

● For some algorithms, all the cases are
computationally same, i.e., there are no worst
and best cases (T(n) will be 3n+2)

Theoretical Analysis of Algorithms

41

● Running time depends on:
○ The computer on which the program is run
○ The compiler used to generate the program

● Find an approximation function for T(n), an upper bound

Theoretical Analysis of Algorithms

42

● Running time depends on:
○ The computer on which the program is run
○ The compiler used to generate the program

● We must propose an approximation function for T(n), an
upper bound.

Theoretical Analysis of Algorithms

43

● Suppose that you have two algorithms with the following
running time functions:
○ T1(n)=3n3

○ T2(n)=3n3+2n2+3n+5

● What is the most efficient?

Theoretical Analysis of Algorithms

44

T1(n)=3n3

T2(n)=3n3+2n2+3n+5
What is the most efficient?

Theoretical Analysis of Algorithms

45

Find an approximation function for T(n), an upper
bound:
1. Find the fastest growing term.
2. Take out the coefficient.

Theoretical Analysis of Algorithms

46

Find an approximation function for T(n), an upper
bound:
1. Find the fastest growing term.
2. Take out the coefficient.

T1(n)=3n3 -> 3n3

T2(n)=3n3+2n2+3n+5 -> 3n3

Theoretical Analysis of Algorithms

47

Find an approximation function for T(n), an upper
bound:
1. Find the fastest growing term.
2. Take out the coefficient.

T1(n)=3n3 -> 3n3 -> n3

T2(n)=3n3+2n2+3n+5 -> 3n3 -> n3

Theoretical Analysis of Algorithms

48

Theoretical Analysis of Algorithms

49

notation name

O(1) constant

O(logn) logarithmic

O(n) linear

O(nlogn) linearithmic

O(n2) quadratic

O(nc) polynomial

O(cn) exponential

O(n!) factorial

B
ig

 O
 fu

nc
tio

ns
Theoretical Analysis of Algorithms

● Good news!!!: a small set of functions:
1 < log n < n < nlog n <n2 <n3<…<2n<n!

50

Theoretical Analysis of Algorithms

Efficient orders-of-growth:

Order Name Description Example
1 Constant Independent

of the input
size

Remove the first
element from a
queue

Log2(n) Logarithmic Divide in half Binary search
n Linear Loop Sum of array

elements
nLog2 (n) Linearithmic Divide and

conquer
Mergesort,
quicksort

51

Theoretical Analysis of Algorithms

nLog2(n)

Log2(n)

1

n

52

Efficient orders-of-growth:

Theoretical Analysis of Algorithms

Order Name Description Example
n2 Quadratic Double loop Add two matrices;

bubble sort
n3 Cubic Triple loop Multiply two

matrices

53

Tractable orders-of-growth:

Theoretical Analysis of Algorithms

n3

n2

54

Tractable orders-of-growth:

Theoretical Analysis of Algorithms

Order Name Description Example
kn Exponential Exhaustive

search
Guess a
password,

n! Factorial Brute-force
search

Enumerate all
partitions of a set

55

Intractable orders-of-growth:

Theoretical Analysis of Algorithms

n!

2n

56

Intractable orders-of-growth:

Theoretical Analysis of Algorithms

Órdenes de Complejidad más comunes

57

58

Some examples:

T(n) Big-O
n + 2 O(?)

½(n+1)(n-1) O(?)
3n+log(n) O(?)

n(n-1) O(?)
7n4+5n2+1 O(?)

Theoretical Analysis of Algorithms

59

T(n) Big-O
n + 2 O(n)

½(n+1)(n-1) O(n2)
3n+log(n) O(n)

n(n-1) O(n2)
7n4+5n2+1 O(n4)

Theoretical Analysis of Algorithms

60

More examples:

T(n) BigO
4 O(?)

3n+4 O(?)

5n²+ 27n + 1005 O(?)

10n³+ 2n² + 7n + 1 O(?)

n!+ n⁵ O(?)

Theoretical Analysis of Algorithms

61

T(n) Big-O
4 O(1)

3n+4 O(n)

5n²+ 27n + 1005 O(n2)

10n³+ 2n² + 7n + 1 O(n3)

n!+ n⁵ O(n!)

Theoretical Analysis of Algorithms

62

Example: Calculate its T(n) and BigO functions.
Discuss the worst and best cases

Algorithm findMax(data)
max=-999999
for c in data:
if c>max then
max=c

return max

Theoretical Analysis of Algorithms

63

Example: Calculate its T(n) and BigO functions.
Discuss the worst and best cases
Algorithm findMax(data)
max=-999999 #1
for c in data: #n

if c>max then #1*n
max=c #1*n

return max #1

Answer:

T(n)=3n+2, O(n)=1
There are no worst and best cases, all the elements of
data must be visited

Theoretical Analysis of Algorithms

