
Unit 4. Recursion

Algorithms and Data Structures (ADS)

Author: Isabel Segura-Bedmar

Grado en Ciencia e Ingeniería de
Datos, 2018-2019

Index

2

● What is recursion?
● Some examples of recursion
● Types of recursion
● Iteration versus Recursion

What is recursion?

3

● A way to achieve repetition.
● A method calls itself.
● Closely related to mathematical induction.
● Some data structures can have a recursive structure

(nodes or trees)

4

● Every recursive method has two parts:
○ BASE CASE(S): case(s) so simple that they can be

solved directly.
○ RECURSIVE CASE(S): more complex and make use

of recursion to:
■ Break the problem to smaller subproblems and
■ Combine into a solution to the larger problem.

What is recursion?

The three laws of recursion:
1. A recursive algorithm must have at least one base

case.
2. A recursive algorithm must call itself, recursively.
3. A recursive algorithm must move toward the base

case.

What is recursion?

5

Index

6

● What is recursion?
● Some examples of recursion

○ Factorial
○ Multiplication by addition
○ Binary search

● Types of recursion
● Iteration versus Recursion

Example 1: Factorial function

7

4!=4.3.2.1=24

4!=4.(3.2.1)=4.3!

Recursive definition

8

Example 1: Implementation of factorial function

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)
First Call

9

factorial(4) 4 * factorial(3)

3 *factorial(2)

10

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)

3 *factorial(2)

2 * factorial(1)

11

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)

3 *factorial(2)

2 * factorial(1)

1 * factorial(0)

12

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)

3 *factorial(2)

2 * factorial(1)

1 * factorial(0)

1 Base case

13

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)

3 *factorial(2)

2 * factorial(1)

1 * factorial(0)

1 1
14

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)

3 *factorial(2)

2 * factorial(1)

1 * 1

1

1

1

15

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)

3 *factorial(2)

2 * 1

1 * 1

1

1

1

2

16

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)
First Call

3 * 2

2 * 1

1 * 1

1

1

1

2

6

17

Example 1: Tracing factorial

factorial(4) 4 * factorial(3)
First Call

3 * 2

2 * 1

1 * 1

1

1

1

2

6
24

18

Example 1: Tracing factorial

Example 1: Analysis of factorial function

19

Big-O function for factorial function?

There is n+1 calls (each of which accounts
for O(1) operations).
Therefore, factorial is O(n)

Index

20

● What is recursion?
● Some examples of recursion

○ Factorial
○ Multiplication by addition
○ Binary search

● Types of recursion
● Iteration versus Recursion

Example 2: Multiply 2 numbers using addition

21

 5 x 3 = 15 = 5 + 5 + 5

22

5 x 3 = 15 = 5 + 5 + 5
def multiplyRec(x, y) :

First, think about the base case(s)???

Example 2: Multiply 2 numbers using addition

23

5 x 3 = 15 = 5 + 5 + 5
def multiplyRec(x, y) :

if y==0:
return 0

Right!!!. Now, think about the recursive case(s)

Example 2: Multiply 2 numbers using addition

24

5 x 3 = 15 = 5 + 5 + 5
def multiplyRec(x, y) :

if y==0:
return 0

else:
return x+multiplyRec(x,y-1)

Yes, you got it!!!

Example 2: Multiply 2 numbers using addition

Index

25

● What is recursion?
● Some examples of recursion

○ Factorial
○ Multiplication by addition
○ Binary search

● Types of recursion
● Iteration versus Recursion

Example 3: Binary search

26

Input: a sorted array of integers and a number
x = 23

A 2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start endmid = (start + end) / 2

A[mid]>x? 1) x=A[mid], Found!!!
2) x<A[mid], search from start to mid-1
3) x>A[mid], search from mid+1 to start

27

Input: a sorted array of integers and a number
x = 23

A 2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start endmid

A[mid]<23 -> search from 5 to 8

Example 3: Binary search

28

Input: a sorted array of integers and a number
x = 23

A 2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start end

A[mid]<23 -> search from 5 to 8

Example 3: Binary search

29

Input: a sorted array of integers and a number
x = 23

A 2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start end

mid = (start + end) = 5 + 8 = 13 / 2= 6

A[mid]==23 -> Found it!!!

Example 3: Binary search

30

Input: a sorted array of integers and a number
x = 7 (which does not exist in the list)

A 2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start endmid

What happens if the array does not
contain the target?

Example 3: Binary search

31

Input: a sorted array of integers and a number
x = 7

A 2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start endmid

A[mid]>7 -> search from 0 to 3

Example 3: Binary search

32

Input: a sorted array of integers and a number
x = 7

A 2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start end

mid=(0+3)/2=1

Example 3: Binary search

33

2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start end

A[mid]<7 -> search 2 to 3

Input: a sorted array of integers and a number
x = 7

A

Example 3: Binary search

34

2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start end

mid=(2+3)/2=2

Input: a sorted array of integers and a number
x = 7

A

Example 3: Binary search

35

2 5 8 10 13 20 23 50 90
0 1 2 3 4 5 6 7 8

start

A[mid]=8>7 -> start=2 , end=mid-1=2-1=1

start>end!!! : the array does not contain it!!!

end

Input: a sorted array of integers and a number
x = 7

A

Example 3: Binary search

36

Example 3: Implementation of Binary search

37

● Initially, the number of candidates is n;
● after the first call in a binary search, it is at

most n/2;
● after the second call, it is at most n/4;

….
● after the jth call, the number of candidate entries

remaining is at most n/2j .
● In the worst case, the function stops when there

are not more candidate entries

Example 3: Analysis of Binary search

38

The maximum number of possible recursive calls is the
smallest integer r such that

O(log n)

Example 3: Analysis of Binary search

Index

39

● What is recursion?
● Some examples of recursion

○ Factorial
○ Multiplication by addition
○ Binary search

● Types of recursion
● Iteration versus Recursion

Types of recursion

1. Linear recursion: a recursive call may make at most
one new recursive call.

2. Binary recursion: a recursive call may make two new
recursive calls.

3. Multiple recursion: a recursive call may make three
or more recursive calls.

40

Index

41

● What is recursion?
● Some examples of recursion
● Types of recursion

○ Linear recursion
○ Binary recursion
○ Multiple recursion

● Iteration versus Recursion

● We already see some examples: factorial, binary
search, etc.

● Now, we will study more examples:
○ Computing the sum of a sequence of integers.
○ Reversing an array
○ Computing powers

42

Types of recursion: Linear recursion

Sum a list of numbers:

43

def sumArray(data):
 result=0
 for x in data:

result += x
 return result

print(sumArray([3,5,8,0]))

Iterative solution

Types of recursion: Linear recursion

44

Given a sequence of numbers, [1,3,5,7,9], how can we
obtain its sum?

Types of recursion: Linear recursion

45

Base case

Types of recursion: Linear recursion

46

Types of recursion: Linear recursion

Example of linear recursion: Sum a list of numbers

47

def sumArrayRec(data):
 if len(data)==0:
 return 0
 else:
 return data[0] + sumArrayRec(data[1:])

Types of recursion: Linear recursion

48

def sumArrayRec(data):
 if len(data)==0:
 return 0
 else:
 return data[0] + sumArrayRec(data[1:])

Types of recursion: Linear recursion

Time complexity: for an input of size n, it makes n+1 calls.

O(n)

49

● Reversing an array: [8,5,3,4,1] -> [1,4,3,5,8]
● Can be solved by using linear recursion: swapping

first and last elements, and recursively reversing the
remaining ones.

8 5 3 4 1

 0 1 2 3 4

1 5 3 4 8

1 4 3 5 8

1 4 3 5 8

Types of recursion: Linear recursion

50

Types of recursion: Linear recursion

51

Time complexity: for an input of size n, it makes 1+n/2
recursive calls.

O(n)

Types of recursion: Linear recursion

52

Power function: power(x,n)=xn

power(x,n)=

1 if n=0

x*power(x,n-1) if n>0

Types of recursion: Linear recursion

53

def power(x,n):
 if n==0:
 return 1
 else:
 return x*power(x,n-1)

Time complexity: O(n)

Types of recursion: Linear recursion

54

● Find largest integer d that evenly divides into p and q.
● Euclid's algorithm (300 BCE).

 a if b=0
● gcd(a,b) =

 gpd(b,a%b) otherwise

gcd(4032,1272) = gcd(1272, 216) = gcd(216,192) =
gcd(192,24) = gcd(24,0) =0

Types of recursion: Linear recursion

55

def gcd(a,b):
 #suppose, a,b>=0, a>b
 if b==0:

return a
 else:

return gcd(b,a%b)

Types of recursion: Linear recursion

Index

56

● What is recursion?
● Some examples of recursion
● Types of recursion

○ Linear recursion
○ Binary recursion
○ Multiple recursion

● Iteration versus Recursion

● Makes two recursive calls.
● We will study two examples:

○ Fibonacci numbers
○ Sum of a list of numbers using binary recursion.

57

Types of recursion: Binary recursion

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

 0 if n=0

Fib(n) = 1 if n=1

Fib(n-1) + Fib(n-1) if n>1

58

Types of recursion: Binary recursion

def fib(n):
if n<=1:

return n
else:

return fib(n-1) + fib(n-2)

Is this an efficient way to compute F(50)?

59

Types of recursion: Binary recursion

No, no, no! This code is spectacularly inefficient: O(2n)

60

Types of recursion: Binary recursion

A more efficient way to calculate fibonacci numbers:

def fibo2(n):
 """Return pair of fibonnacci numbers
 F(n), F(n-1)"""
 if n==1:
 return (1,0)
 else:
 (a,b)=fibo2(n-1)
 return (a+b,a)

print(fibo2(50)) Time complexity: O(n)

61

Types of recursion: Binary recursion

● How to compute the sum of an sequence of numbers
using binary recursion?

Idea!!!: divide into two halves, compute the sum of the
first half, compute the sum of the second half, and add
these sums

62

Types of recursion: Binary recursion

63

Types of recursion: Binary recursion

64

Time complexity: for an input of size n, there are 2n-1
recursive calls

Types of recursion: Binary recursion

Index

65

● What is recursion?
● Some examples of recursion
● Types of recursion

○ Linear recursion
○ Binary recursion
○ Multiple recursion

● Iteration versus Recursion

● Makes three or more recursive calls.
● Exploring the file system can be solved using multiple

recursion

66

Types of recursion: Multiple recursion

Exploring file system
67

Types of recursion: Multiple recursion

68

Implement it yourself!!!

How to compute the disk space usage of a
given directory (path)?

Types of recursion: Multiple recursion

Index

69

● What is recursion?
● Some examples of recursion
● Types of recursion

○ Linear recursion
○ Binary recursion
○ Multiple recursion

● Iteration versus Recursion

Iteration vs Recursion

70

● A loop is also a repetitive process.
● A recursive method is more mathematically elegant

than using a loop. Recursion is easy and neat
approach (powerful programming paradigm).

● Recursive methods have worse time-complexity
than loops (because each function call requires
multiple memory to store the internal address of the
method)

● All recursive methods can be solved using a iterative
solution.

● Not all problem can be solved using recursive.

To iterate is human, to recurse,
divine

71

