\section*{uc3m	Universidad
Carlos III	de Madrid}

Grado en Ciencia e Ingeniería de
 Datos, 2018-2019

Unit 4. Recursion

Algorithms and Data Structures (ADS)

Index

- What is recursion?
- Some examples of recursion
- Types of recursion
- Iteration versus Recursion

What is recursion?

- A way to achieve repetition.
- A method calls itself.
- Closely related to mathematical induction.
- Some data structures can have a recursive structure (nodes or trees)

What is recursion?

- Every recursive method has two parts:
- BASE CASE(S): case(s) so simple that they can be solved directly.
- RECURSIVE CASE(S): more complex and make use of recursion to:
- Break the problem to smaller subproblems and
- Combine into a solution to the larger problem.

What is recursion?

The three laws of recursion:

1. A recursive algorithm must have at least one base case.
2. A recursive algorithm must call itself, recursively.
3. A recursive algorithm must move toward the base case.

Index

- What is recursion?
- Some examples of recursion
- Factorial
- Multiplication by addition
- Binary search
- Types of recursion
- Iteration versus Recursion

Example 1: Factorial function

$$
\begin{aligned}
& n!= \begin{cases}1 & \text { if } n=0 \\
n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1 & \text { if } n \geq 1 .\end{cases} \\
& 4!=4.3 .2 .1=24 \\
& 4!=4 .(3.2 .1)=4.3!
\end{aligned}
$$

$$
n!=\left\{\begin{array}{l}
1 \quad \text { Recursive definition } \\
n \cdot(n-1)!
\end{array}\right.
$$

$$
\text { if } n=0
$$

$$
\text { if } n \geq 1 \text {. }
$$

Example 1: Implementation of factorial function

```
def factorial(n):
    if n==0:#base case
    return 1
    else: #recursive case
        return n*factorial(n-1)
```


Example 1: Tracing factorial

First Call
factorial(4)

4 * factorial(3)

def factorial(n):

if $\mathrm{n}==0$:\#base case return 1
else: \#recursive case return n*factorial(n-1)

Example 1: Tracing factorial

factorial(4)

4 * factorial(3)

3 *factorial(2)

def factorial(n):
if $n==0: \# b a s e ~ c a s e$ return 1
else: \#recursive case return n*factorial(n-1)

Example 1: Tracing factorial

factorial(4)

4 * factorial(3)

3 *factorial(2)

2 * factorial(1)

def factorial(n):
if $\mathrm{n}==0$:\#base case return 1
else: \#recursive case return n*factorial(n-1)

Example 1: Tracing factorial

factorial(4)

4 * factorial(3)

3 *factorial(2)

2 * factorial(1)
def factorial(n):
if $\mathrm{n}==0$:\#base case return 1

else: \#recursive case return n*factorial(n-1)

Example 1: Tracing factorial

factorial(4)

4 * factorial(3)

3 *factorial(2)

2 * factorial(1)
def factorial(n):
if $n==0: \# b a s e ~ c a s e$ return 1

1 * factorial(O)
else: \#recursive case return n*factorial(n-1)

Example 1: Tracing factorial

factorial(4)

4 * factorial(3)

3 *factorial(2)
def factorial(n):
if $\mathrm{n}==0$:\#base case return 1
else: \#recursive case return n*factorial(n-1)

1* factorial(0)

Example 1: Tracing factorial

factorial(4)

4 * factorial(3)

3 *factorial(2)

2 * factorial(1)

1*1
else: \#recursive case return n *factorial(n-1)
def factorial(n): if $\mathrm{n}==0$:\#base case return 1

Example 1: Tracing factorial

factorial(4)

4 * factorial(3)

Example 1: Tracing factorial

First Call

factorial(4)

4 * factorial(3)

def factorial(n): if $n==0: \# b a s e ~ c a s e ~$ return 1
else: \#recursive case return n *factorial(n-1) 1

Example 1: Tracing factorial

First Call
factorial(4)

4 * factorial(3)
6
def factorial(n):
if $n==0: \# b a s e ~ c a s e$ return 1
else: \#recursive case return n*factorial(n-1

Example 1: Analysis of factorial function

Big-O function for factorial function?
def factorial(n):
if $\mathrm{n}==0$:\#base case return 1
else: \#recursive case return n*factorial(n-1)

There is $\mathrm{n}+1$ calls (each of which accounts for $\mathrm{O}(1)$ operations).
Therefore, factorial is $\mathrm{O}(\mathrm{n})$

Index

- What is recursion?
- Some examples of recursion
- Factorial
- Multiplication by addition
- Binary search
- Types of recursion
- Iteration versus Recursion

Example 2: Multiply 2 numbers using addition

$$
5 \times 3=15=5+5+5
$$

Example 2: Multiply 2 numbers using addition

$$
5 \times 3=15=5+5+5
$$

def multiplyRec(x, y) :

First, think about the base case(s)???

Example 2: Multiply 2 numbers using addition

$$
5 \times 3=15=5+5+5
$$

def multiplyRec(x, y) :

$$
\begin{aligned}
& \text { if } y==0: \\
& \text { return } 0
\end{aligned}
$$

Right!!!. Now, think about the recursive case(s)

Example 2: Multiply 2 numbers using addition

$$
5 \times 3=15=5+5+5
$$

def multiplyRec(x, y) :

$$
\text { if } y==0 \text { : }
$$

$$
\text { return } 0
$$

else:

return $x+$ multiplyRec $(x, y-1)$

Yes, you got it!!!

Index

- What is recursion?
- Some examples of recursion
- Factorial
- Multiplication by addition
- Binary search
- Types of recursion
- Iteration versus Recursion

Example 3: Binary search

Input: a sorted array of integers and a number
$x=23$
\($$
\begin{gathered} \\
\\
\text { A }\end{gathered}
$$ \begin{gathered}0

0\end{gathered} |\)| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{8}$ | $\mathbf{1 0}$ | $\mathbf{1 3}$ | $\mathbf{2 0}$ | $\mathbf{2 3}$ | $\mathbf{5 0}$ | $\mathbf{9 0}$ |

start

$$
\text { mid }=(\text { start }+ \text { end }) / 2
$$

end

A[mid]>x?

1) $x=A[m i d]$, Found!!!
2) $x<A[m i d]$, search from start to mid-1
3) $x>A[m i d]$, search from mid+1 to start

Example 3 : Binary search

Input: a sorted array of integers and a number $x=23$

A[mid]<23 -> search from 5 to 8

Example 3 : Binary search

Input: a sorted array of integers and a number $x=23$

A

A[mid]<23 -> search from 5 to 8

Example 3: Binary search

Input: a sorted array of integers and a number

$$
x=23
$$

A

0	1	2	3	4	5	6	7	8
2	5	8	10	13	20	23	50	90
start end								

A[mid]==23 -> Found it!!!

Example 3: Binary search

Input: a sorted array of integers and a number $x=7$ (which does not exist in the list)

What happens if the array does not contain the target?

Example 3 : Binary search

Input: a sorted array of integers and a number $x=7$

A[mid]>7 -> search from 0 to 3

Example 3: Binary search

Input: a sorted array of integers and a number

$$
x=7
$$

$$
\operatorname{mid}=(0+3) / 2=1
$$

Example 3: Binary search

Input: a sorted array of integers and a number

$$
x=7
$$

A[mid]<7 -> search 2 to 3

Example 3: Binary search

Input: a sorted array of integers and a number

$$
x=7
$$

$$
\operatorname{mid}=(2+3) / 2=2
$$

Example 3: Binary search

Input: a sorted array of integers and a number

$$
x=7
$$

A

0	1	2	3	4	5	6	7	8
2	5	$\mathbf{8}$	$\mathbf{1 0}$	13	20	23	50	90
start end								

A[mid]=8>7 -> start=2, end=mid-1=2-1=1
start>end!!! : the array does not contain it!!!

Example 3: Implementation of Binary search

```
def binary_search(data,x):
    if len(data)==0:
        return False
    #integer division
    mid=len(data)//2
    if x==data[mid]: #base case
        return True #found!!!
    elif x<data[mid]: #recursive case,
        #search at the first half of the array
        return binary_search(data[0:mid],x)
    else:#x>data[mid], recursive case
        #search at the second half of the array
        return binary_search(data[mid+1:],x)
```


Example 3: Analysis of Binary search

- Initially, the number of candidates is n ;
- after the first call in a binary search, it is at most n/2;
- after the second call, it is at most $\mathrm{n} / 4$;
- after the jth call, the number of candidate entries remaining is at most $\mathrm{n} / \mathrm{2}^{j}$.
- In the worst case, the function stops when there are not more candidate entries

Example 3: Analysis of Binary search

The maximum number of possible recursive calls is the smallest integer r such that

$$
\begin{gathered}
\frac{n}{2^{r}}<1 . \\
r=\lfloor\log n\rfloor+1 \\
O(\log n)
\end{gathered}
$$

Index

- What is recursion?
- Some examples of recursion
- Factorial
- Multiplication by addition
- Binary search
- Types of recursion
- Iteration versus Recursion

Types of recursion

1. Linear recursion: a recursive call may make at most one new recursive call.
2. Binary recursion: a recursive call may make two new recursive calls.
3. Multiple recursion: a recursive call may make three or more recursive calls.

Index

- What is recursion?
- Some examples of recursion
- Types of recursion
- Linear recursion
- Binary recursion
- Multiple recursion
- Iteration versus Recursion

Types of recursion: Linear recursion

- We already see some examples: factorial, binary search, etc.
Now, we will study more examples:
- Computing the sum of a sequence of integers.
- Reversing an array
- Computing powers

Types of recursion: Linear recursion

Sum a list of numbers:

def sumArray(data):
result=0
for x in data: Iterative solution result += x
return result

print(sumArray([3,5,8,0]))

Types of recursion: Linear recursion

Given a sequence of numbers, $[1,3,5,7,9]$, how can we obtain its sum?

Types of recursion: Linear recursion

Base case

Types of recursion: Linear recursion

Types of recursion: Linear recursion

Example of linear recursion: Sum a list of numbers
def sumArrayRec(data):
if len(data) $==0$:
return 0
else:
return data[0] + sumArrayRec(data[1:])

Types of recursion: Linear recursion

def sumArrayRec(data):
if len(data) $==0$: return 0
else:
return data[0] + sumArrayRec(data[1:])

Time complexity: for an input of size n, it makes $n+1$ calls.

$$
\stackrel{\vdots}{\mathrm{O}(\mathrm{n})}
$$

Types of recursion: Linear recursion

- Reversing an array: [8,5,3,4,1] -> [1,4,3,5,8]
- Can be solved by using linear recursion: swapping first and last elements, and recursively reversing the remaining ones.

0	1	2	3	4
8	5	3	4	1
1 5 3 4 8 1 4 3 5 81 4 3 5	8			

Types of recursion: Linear recursion

```
def reverse(data):
```

 if len(data)>0:
 \#swap the first and last element of the list
temp=data[0]
data[0]=data[len(data)-1]
data[len(data)-1]=temp
reverse(data[1:len(data)-1])

Types of recursion: Linear recursion

def reverse(data):
if len(data)>0:
\#swap the first and last element of the list temp=data[0]
data[0]=data[len(data)-1]
data[len(data)-1]=temp
reverse(data[1:len(data)-1])

Time complexity: for an input of size n, it makes $1+n / 2$ recursive calls.

Types of recursion: Linear recursion

Power function: power(x, n) $=x^{n}$

Types of recursion: Linear recursion

```
def power(x,n):
    if n==0:
        return 1
    else:
        return x*power(x,n-1)
```

Time complexity: $\mathrm{O}(\mathrm{n})$

Types of recursion: Linear recursion

- Find largest integer d that evenly divides into p and q.
- Euclid's algorithm (300 BCE).
$a \quad$ if $b=0$
- $\operatorname{gcd}(a, b)=$
$\operatorname{gpd}(b, a \% b)$ otherwise
$\operatorname{gcd}(4032,1272)=\operatorname{gcd}(1272,216)=\operatorname{gcd}(216,192)=$ $\operatorname{gcd}(192,24)=\operatorname{gcd}(24,0)=0$

Types of recursion: Linear recursion

def $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$:
\#suppose, $a, b>=0, a>b$
if $b==0$:
return a
else:
return $\operatorname{gcd}(b, a \% b)$

Index

- What is recursion?
- Some examples of recursion
- Types of recursion
- Linear recursion
- Binary recursion
- Multiple recursion
- Iteration versus Recursion

Types of recursion: Binary recursion

- Makes two recursive calls.
- We will study two examples:
- Fibonacci numbers
- Sum of a list of numbers using binary recursion.

Types of recursion: Binary recursion

Fibonacci numbers: $0,1,1,2,3,5,8,13,21,34,55, \ldots$

Types of recursion: Binary recursion

```
def fib(n):
    if n<=1:
            return n
    else:
        return fib(n-1) + fib(n-2)
```

Is this an efficient way to compute $F(50)$?

Types of recursion: Binary recursion

No, no, no! This code is spectacularly inefficient: $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Types of recursion: Binary recursion

A more efficient way to calculate fibonacci numbers:

```
def fibo2(n):
    """Return pair of fibonnacci numbers
    F(n), F(n-1)"""
    if n==1:
        return (1,0)
    else:
        (a,b)=fibo2(n-1)
        return (a+b,a)
```

 print(fibo2(50))
 Time complexity: O(n)

Types of recursion: Binary recursion

- How to compute the sum of an sequence of numbers using binary recursion?

Idea!!!: divide into two halves, compute the sum of the first half, compute the sum of the second half, and add these sums

Types of recursion: Binary recursion

```
def binary_sum(data):
    if len(data)==0:
        return 0
    else:
        mid=len(data)//2
        return data[mid] + ( binary_sum(data[0:mid])+
                        binary_sum(data[mid+1:]) )
```


Types of recursion: Binary recursion

```
def binary_sum(data):
    if len(data)==0:
        return 0
    else:
        mid=len(data)//2
        return data[mid] + ( binary_sum(data[0:mid])+
                        binary_sum(data[mid+1:]) )
```

Time complexity: for an input of size n, there are $2 \mathrm{n}-1$ recursive calls

Index

- What is recursion?
- Some examples of recursion
- Types of recursion
- Linear recursion
- Binary recursion
- Multiple recursion
- Iteration versus Recursion

Types of recursion: Multiple recursion

- Makes three or more recursive calls.
- Exploring the file system can be solved using multiple recursion

Types of recursion: Multiple recursion

Exploring file system

Types of recursion: Multiple recursion

How to compute the disk space usage of a given directory (path)?

Algorithm DiskUsage(path):
Input: A string designating a path to a file-system entry
Output: The cumulative disk space used by that entry and any nested entries
total $=$ size(path)
\{immediate disk space used by the entry\}
if path represents a directory then
for each child entry stored within directory path do
total $=$ total + DiskUsage(child)
\{recursive call\}
return total

Implement it yourself!!!

Index

- What is recursion?
- Some examples of recursion
- Types of recursion
- Linear recursion
- Binary recursion
- Multiple recursion
- Iteration versus Recursion

Iteration vs Recursion

- A loop is also a repetitive process.
- A recursive method is more mathematically elegant than using a loop. Recursion is easy and neat approach (powerful programming paradigm).
- Recursive methods have worse time-complexity than loops (because each function call requires multiple memory to store the internal address of the method)
- All recursive methods can be solved using a iterative solution.
- Not all problem can be solved using recursive.

To iterate is human, to recurse, divine

