
Unit 5. Trees

Algorithms and Data Structures (ADS)

1Author: Isabel Segura-Bedmar

Grado en Ciencia e Ingeniería de 
Datos, 2018-2019



Index

2

● Introduction (basic concepts)
● ADT Binary Tree
● ADT Binary Search Tree
● Balanced trees



3

Introduction

Python list (array)

None

Linked List

Stack

0 1 2 3 4

Queue



4

● How should we choose which data 
structure to use?
○ What kind of data we need to 

represent?
○ Time complexity of operations.
○ Space complexity
○ Ease of implementation

Introduction



5

Trees can be useful to represent hierarchical data

File system

Introduction



6

Trees can be useful to represent hierarchical data

Family tree

Introduction



7

Final Degree Project

1.1. 
Motivation

Chapter 1: 
Introduction

1.2. 
Objectives

Chapter 2: 
Background

Chapter 3: 
The approach

Chapter 4: 
Evaluation

Chapter 5: 
Conclusions

Common structure of a manuscript for a final 
degree project

Introduction



8

Introduction



subtree

A

B DC

G HE F

I J K

• Root: the only node without a 
father (A)

• Internal Node: at least one child 
(A, B, C, F)

• Leaf Node (External): without 
children (E, I, J, K, G, H, D)

• Siblings: nodes with the same 
parent.

• Ancestors and descendents.
• Subtree: tree formed by a node 

and its descendents.

9

Introduction (basic concepts)



T1

10

root

T2 T3

subtrees

Recursive data structure

Introduction (tree data structure)



11

● A tree T is a set of nodes with parent-child 
relationships, which satisfies:
○ If T is not empty, it only has one root. The root has 

no parent.
○ Each node of T (no root) has a unique parent

Introduction (formal tree definition)



12

A

B DC

G HE F

I J K

If the tree has n nodes, 
how many edges does it 
have? 

Introduction (some tree properties)



13

A

B DC

G HE F

I J K

If the tree has n nodes, 
how many edges does it 
have? 

n nodes => n-1 links (edges)

Introduction (some tree properties)



14

A

B DC

G HE F

I J K

Size of x (node) is the 
number of nodes in its 
subtree.

Size of a tree is the 
number of its nodes

Some examples: 
size(B)=6
size(C)=3
size(A)=11

Introduction (some tree properties)



15

A

B DC

G HE F

I J K

Depth of x (node) is the 
length of the path from the 
root to node x.

Some examples: 
depth(A)=0
depth(B)=1
depth(E)=2
depth(J)=3

Introduction (some tree properties)



16

A

B DC

G HE F

I J K

Height of x (node) is the 
length of the longest path 
from the node x to any leaf.

Some examples: 
height(K)=0
height(F)=1
height(B)=2
height(A)=3

Introduction (some tree properties)



17

A

B DC

G HE F

I J K

Height of a tree = height 
of its root

Note: The height of an empty tree is -1. 

The height of this tree is:
height(A)=3

Introduction (some tree properties)



● path: there is a path between nodes X and Y if there 
is a sequence of nodes allowing to reach Y from X 
(going only through descendants). 

path(A,K)={A,B,F,K}
path(C,K)={}

A

B DC

G HE F

I J K

18

Introduction (some tree properties)



● Degree of a node: number of its children

 Degree 2                 Degree 3

● Degree of a tree: the greatest degree for all its 
nodes

A

B C

A

B C D

19

Introduction (some tree properties)



Index

20

● Introduction (basic concepts)
● Binary Tree ADT
● Binary Search Tree ADT
● Balanced trees



● Binary tree: tree with degree 2.
○ each node has at most two children

Binary tree ADT

21

Left 
subtree

Right 
subtree

A

B C

F GD E

H



They are also binary trees

22

A

B

D

A

Binary tree ADT



Example I: Decision trees
■ Intern node: questions with yes/no answers
■ Leaf nodes: decisions
 

Example of a decision tree to order three elements A, B, 
C

23

Binary tree ADT (applications)



Example II: representing arithmetic expressions
■ Internal nodes: operators
■ Leaf nodes: operands

 2x(a-1)+3xb
+

××

−2

a 1

3 b

24

Binary tree ADT (applications)



A

B C

G HE F

I J

● A binary tree is a strict (proper) binary  tree if 
every node has 0 or two children.

25

A

B C

HF

I J

It is not a strict binary treeIt is a strict binary tree

Binary tree ADT



26

A complete binary tree is a binary tree in which every 
level, except possibly the last, is completely filled, and all 
nodes are as far left as possible.

A

B C

G HE F

I J

It is not a complete  binary tree

A

B C

G HE F

It is a complete  binary tree

I J

Binary tree ADT 



27

In a perfect binary tree, all the levels are filled. This means 
that all the leaves are at the same level

A

B C

G HE F

I J

It is not a perfect  binary tree

A

B C

G HE F

It is a perfect  binary tree

Binary tree ADT 



● Notation
○ n: number of nodes
○ e: number of leafs
○ i: number of internal 

nodes
○ h: height of a tree

● Properties
○ n = 2e-1
○ h ≤ i
○ h ≤ (n-1)/2 
○ e ≤ 2h 
○ h ≥ log2e○ h ≥ log2(n+1)-1 

● If it is a perfect binary 
tree:
○ e = i+1
○ e ≥ h+1

Binary tree ADT (properties)



Index

29

● Introduction (basic concepts)
● Binary Tree ADT

○ Binary Tree Traversals
● Binary Search Tree ADT
● Balanced trees



Preorder traversal
○ First, root is visited, then the left subtree is visited 

and, finally, the right subtree (root, left, right)
○ Example:

pre-order: (h, i, e, m, a)

h

i

e

m

a

30

Binary tree ADT: Preorder traversal



31

F

D J

B E G K

A C  I

H

root <left> <right>

F, D, B, A, C, E, J, G, I, H, K

Binary tree ADT: Preorder traversal



Postorder traversal
○ First, we visit the left subtree, then the right 

subtree, and finally, the root. (left, right, root)
○ Example:

h

i

e

m

a
post-orden: (e, i, a, m, h)

32

Binary tree ADT: Postorder traversal



33

F

D J

B E G K

A C  I

H

<left> <right> root

A C B E D H I G K J F

Binary tree ADT: Postorder traversal



In-order traversal  we visit the left subtree, the root and 
the right subtree (left, root, right)

○ Example:

in-order: (i, e, h, a, m)

h

i

e

m

a

34

Binary tree ADT: In-order traversal



35

F

D J

B E G K

A C  I

H

<left> root <right> 

A B C D E F G H I J K

Binary tree ADT: In-order traversal



Level-order traversal
○ Node are visited by level according to depth in 

the tree. So, nodes ate the same level are 
visited, in descending order and from left to 
right.

○ Example:

Level-order: (h,i,m,e,a)

h

i

e

m

a

36

Binary tree ADT: Level-order traversal



37

F

D J

B E G K

A C  I

H

Level-order:F D J B E G K A C I H

Binary tree ADT: Level-order traversal



Index

38

● Introduction (basic concepts)
● Binary Tree ADT

○ Binary Tree Traversals
○ Implementation

● Binary Search Tree ADT
● Balanced trees



39

Binary Tree ADT: implementation

Node
Tree



40

Node

Algorithm Node(node,elem):
node.elem=elem 
node.leftChild=None
node.rightChild=None
node.parent=None

Binary Tree ADT: implementation



41

By default, the tree constructor must create an empty 
tree (root=None):

Algorithm Tree(T):
T.root=None

Binary Tree ADT: implementation



42

● The size of a tree is the number of nodes. It can be 
defined as the size of the root node. The size of a 
node is its descendants including itself. 

Algorithm size(T):
return sizeNode(T.root)

Algorithm sizeNode(node):
....

Binary Tree ADT: implementation (size method)



43

Algorithm size(T):
return sizeNode(T.root)

Algorithm sizeNode(node):
If node is None:

return 0

return 1 + sizeNode(node.leftChild) +         
sizeNonde(node.rightChild)

Binary Tree ADT: implementation (size method)



44

● The height of a tree is the height of its root node. The 
height of a node is the number of edges on the longest 
path from the node to a leaf. 

Algorithm height(T):
return heightNode(T.root)

Algorithm heightNode(node):
....

Binary Tree ADT: implementation (height method)



45

Algorithm height(T):
return heightNode(T.root)

Algorithm heightNode(node):
If node is None:

return -1

return 1 +max(heightNode(node.leftChild),     
heightNode(node.rightChild))

Binary Tree ADT: implementation (height method)



46

● The depth of a node is the length of the path from the 
root of the tree to the node:

Algorithm depth(T,node):
If node==T.root:

return 0

return 1 + depth(T,node.parent)

Binary Tree ADT: implementation (depth method)



47

Algorithm preorder(T):
preorderNode(T.root)

Algorithm preorderNode(node):
....

Binary Tree ADT: implementation (preorder method)



48

Algorithm preorder(T):
preorderNode(T.root)

Algorithm preorderNode(node):
If node is not None:

print(node.element)
preorderNode(node.leftChild)
preorderNode(node.rightChild)

Binary Tree ADT: implementation (preorder method)



49

Algorithm postorder(T):
postorderNode(T.root)

Algorithm postorderNode(node):
....

Binary Tree ADT: implementation (postorder method)



50

Algorithm postorder(T):
postorderNode(T.root)

Algorithm postorderNode(node):
If node is not None:

postorderNode(node.leftChild)
postorderNode(node.rightChild)
print(node.element)

Binary Tree ADT: implementation (postorder method)



51

Algorithm inorder(T):
inorderNode(T.root)

Algorithm inorderNode(node):
....

Binary Tree ADT: implementation (inorder method)



52

Algorithm inorder(T):
inorderNode(T.root)

Algorithm inorderNode(node):
If node is not None:

inorderNode(node.leftChild)
print(node.element)
inorderNode(node.rightChild)

Binary Tree ADT: implementation (inorder method)



53

F

D J

B E G K

A C  I

H

Binary Tree ADT: implementation (level-order method)

q: Queue



54

F

D J

B E G K

A C  I

H

q.enqueue(root)

F

Binary Tree ADT: implementation (level-order method)

q: Queue



55

F

D J

B E G K

A C  I

HD J

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

current

Output: F

Binary Tree ADT: implementation (level-order method)



56

F

D J

B E G K

A C  I

HJ B E

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D

current

Binary Tree ADT: implementation (level-order method)



57

F

D J

B E G K

A C  I

HB E G K

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J

current

Binary Tree ADT: implementation (level-order method)



58

F

D J

B E G K

A C  I

HE G K A C

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B

current

Binary Tree ADT: implementation (level-order method)



59

F

D J

B E G K

A C  I

HG K A C

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E

current

Binary Tree ADT: implementation (level-order method)



60

F

D J

B E G K

A C  I

HK A C I

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E G 

current

Binary Tree ADT: implementation (level-order method)



61

F

D J

B E G K

A C  I

HA C I

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E G K 

current

Binary Tree ADT: implementation (level-order method)



62

F

D J

B E G K

A C  I

HC I

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E G K A 

current

Binary Tree ADT: implementation (level-order method)



63

F

D J

B E G K

A C  I

HI

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E G K A C 

current

Binary Tree ADT: implementation (level-order method)



64

F

D J

B E G K

A C  I

HH

q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E G K A C I current

Binary Tree ADT: implementation (level-order method)



65

F

D J

B E G K

A C  I

H
q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E G K A C I H
current

Binary Tree ADT: implementation (level-order method)



66

F

D J

B E G K

A C  I

H
q: Queue

current=q.dequeue()
print(current.elem)
if current.left!=None:
   q.enqueue(current.left)
if current.right!=None:
   q.enqueue(current.right)

Output: F D J B E G K A C I H

The queue is empty!!!

Binary Tree ADT: implementation (level-order method)



67

Algorithm levelorder():
If root==None:

Show message(‘tree is empty’)
return

  q=Queueu() #queue of binary nodes
  q.enqueue(root)
  while !q.isEmpty():

current=q.dequeue()
print(current.elem)
if current.left!=None:

q.enqueue(current.left)
if current.right!=None:

q.enqueue(current.right)

   

Binary Tree ADT: implementation (level-order method)



Index

68

● Introduction (basic concepts)
● Binary Tree ADT
● Binary Search Tree ADT
● Balanced trees



Binary Search Tree (BST)

What data structure should you use to store a 
modifiable collection? 

● Search(x)
● Insert(x)
● Remove(x)



Python List
2 -5 18 0 3 2 5 5
0 1 2 3 4 5 6 7

operation Time complexity

search(x) O(n)

insert(x) O(1) / O(n)

remove(x) O(1) / O(n)

Binary Search Tree (BST)



operation Time complexity

search(x) O(n)

insert(x) O(1) / O(n)

remove(x) O(1) / O(n)

Linked List None

Binary Search Tree (BST)



● Let’s say that the cost of 1 comparison = 10-6 seconds.
● If we have to perform a search in Facebook (with more 

than 1 billion of users):
○ 1 billion (108) x 10-6 seconds = 100 seconds!!!

Binary Search Tree (BST)



Python List
(sorted) 2 5 8 10 13 20 23 50 90

0 1 2 3 4 5 6 7 8

operation Time complexity

search(x) O(log2n)

n
n/2
n/4
n/8
…
n/2k = 1

n = 2k

k =log2n

Binary Search Tree (BST)



● Let’s say that the cost of 1 comparison = 10-6 seconds. 
● If we have to perform a search in Facebook (with more 

than 1 billion of users):
  

n=1 billion (108) => log2(108) = 18.42 comparisons
18.42 x 10-6 seconds = 0.00001 seconds << 100 seconds

Binary Search Tree (BST)



Python List
(sorted) 2 5 8 10 13 20 23 50 90

0 1 2 3 4 5 6 7 8

operation Time complexity

search(x) O(log2n)

insert(x) O(n)

remove(x) O(n)

Binary Search Tree (BST)



Binary Search Trees

operation Time complexity

search(x) O(log2n)

insert(x) O(log2n)

remove(x) O(log2n)

Binary Search Tree (BST)



● A binary tree in which for each node, value of all 
the nodes in its left subtree is lesser and value of 
all the nodes in its right subtree is greater

(greater)(lesser)

node

Left 
subtree

Right 
subtree

Left < node < Right

Binary Search Tree (BST)



10

5 20

3 7 15 30

1 4  17

16

Is it a binary search tree? 
Yes, it is!!!

Binary Search Tree (BST)



10

5 20

3 7 15 30

1 6  21

16

Is it a binary search tree? 

Binary Search Tree (BST)



10

5 20

3 7 15 30

1 6  21

16
It is not a BST

Is it a binary search tree? 

Binary Search Tree (BST)



Binary Search Tree (BST)



Index

82

● Introduction (basic concepts)
● Binary Tree ADT
● Binary Search Tree ADT

○ search
○ insert
○ remove

● Balanced trees



Binary Search Tree (BST) - search

10

5 20

3 7 15 30

1 4  17

16

search(16)

We must move through the tree until 
to reach a node with this value.
We must return True.



Binary Search Tree (BST) - search

10

5 20

3 7 15 30

1 4  17

16

search(15)

If the node does not exist, we stop 
our search when we reach None. 
The, we must return False

None



85

Algorithm search(T,x):
searchNode(T.root,x)

Algorithm searchNode(node,x):
If node is None:

return False

If node.elem==x:
return True

…….

Base Cases for the recursive function

… and the recursive cases???

Binary Search Tree (BST) - search



86

Algorithm search(T,x):
searchNode(T.root,x)

Algorithm searchNode(node,x):
If node is None:

return False

If node.elem==x:
return True

If x<node.elem:
return searchNode(node.left,x)

If x>node.elem:
return searchNode(node.right,x)

Recursive cases

Binary Search Tree (BST) - search



87

Exercise: Implement a non-recursive method to search 
an element into a BST

Binary Search Tree (BST) - search



88

Algorithm searchIte(T,x):
current=T.root
while current:

if current.elem==x:
return True

if x<current.elem:
current=current.left

else:
current=current.right

return False

Binary Search Tree (BST) - search



h=height 
of the 
tree

In the worst case, the search needs h comparisons, where 
h is the height of the tree (for example, search(70))

Binary Search Tree (BST) - Big-O for search



Therefore, time complexity for search will be O(h) 
where h is the height of the tree.

h=height 
of the 
tree

Binary Search Tree (BST) - Big-O for search



Binary Search Tree (BST) - Big-O for search

n/2

n

search(70)



n/2

n

n/22

search(70)

Binary Search Tree (BST) - Big-O search



n/2

n

n/22

n/23

Binary Search Tree (BST) - Big-O search
search(70)



The search space is always divided by 2

⬥ Step1 = n / 21

⬥ Step2 = n / 22

⬥ Step3 = n / 23

⬥ .
⬥ .
⬥ Steph = n / 2h = 1, where 

h is the height of the tree

In the worst case, the number 
of steps to find a node is the 
height of the tree = hn = 2k

k = log2(n)

Binary Search Tree (BST) - Big-O search



The search space is always divided by 2

⬥ Step1 = n / 21

⬥ Step2 = n / 22

⬥ Step3 = n / 23

⬥ .
⬥ .
⬥ Steph = n / 2h = 1, where 

h is the height of the tree

n = 2h

h = log2(n)

O(h)=O(log2n) 

Binary Search Tree (BST) - Big-O search



10

5

3

1

In this BST, the search 
space will be reduced by 
only one at each step!!!!

n
n-1
n-2
…
1 

O(n)

Therefore, we should keep the BST balanced!!! (next 
lesson).

Binary Search Tree (BST) - Big-O search



Index

97

● Introduction (basic concepts)
● Binary Tree ADT
● Binary Search Tree ADT

○ search
○ insert
○ remove

● Balanced trees



10

5 20

3 7 15 30

1 4  17

16

insert(8)

None

We must move through the tree until to 
reach the right position for the new node (or 
until to find a node with the same value)

Binary Search Tree (BST) - insert



10

5 20

3 7 15 30

1 4  17

16

insert(8)

8

Finally, we must create the new node and 
link it to its parent node. 

Binary Search Tree (BST) - insert



10

5 20

3 7 15 30

1 4  17

16

insert(20)

If the node already exists, we can show a 
message such as ‘That key already exists!!!’ 

Binary Search Tree (BST) - insert



101

Algorithm insert(T,x):
If T.root is None:

T.root=BinaryNode(x)
Else:

insertNode(T.root,x)

Algorithm insertNode(node,x):
If node.elem==x:

Show message “x already exists!!!”
Return
...

If the tree is empty (root=None), we 
create a new node, which will be 
the root.

We do not allow duplicate elements!!!

Binary Search Tree (BST) - insert



102

Algorithm insert(T,x):
If T.root is None:

T.root=BinaryNode(x)
Else:

insertNode(T.root,x)

Algorithm insertNode(node,x):
If node.elem==x:

Show message “x already exists!!!”
Return
...

… and the recursive cases???

Binary Search Tree (BST) - insert



103

Algorithm insert(T,x):
If T.root is None:

T.root=BinaryNode(x)
Else:

insertNode(T.root,x)

Algorithm insertNode(node,x):
If node.elem==x:

Show message “x already exists!!!”
Return

If x<node.elem:
If node.left is None:

newNode=BinaryNode(x)
node.left=newNode
newNode.parent=node

Else:
insertNode(node.left,x)

Implementing a BST- insert

If the node doesn’t have left 
child, we have already found the 
position for the new node.

We must continue searching the 
position for the new node



104

…
Else: #if x>node.elem:

If node.right is None:
newNode=BinaryNode(x)
node.right=newNode
newNode.parent=node

Else:
insertNode(node.right,x)

Implementing a BST- insert (continue)

If the element is greater than the node’s element, we must continue 
searching on its right child. 

If there is no right child, we have just found the position for the new 
node.
If there is right child, we must continue the search by calling the 
recursive method on the right child.



Index

105

● Introduction (basic concepts)
● Binary Tree ADT
● Binary Search Tree ADT

○ search
○ insert
○ remove

● Balanced trees



10

5 20

3 7 15 30

1 4  17

16

remove(16)
Binary Search Tree (BST) - remove 



10

5 20

3 7 15 30

1 4  17

16

remove(16)
Binary Search Tree (BST) - remove 



108

Firstly, we must search the node to be removed.

Binary Search Tree (BST) - remove 



109

Firstly, we must search the node to be removed.

Algorithm find(T,x):
return findNode(T.root,x)

Algorithm findNode(node,x):
If node is None:

return None
If node.elem==x:

return node

If x<node.elem:
return findNode(node.left,x)

If x>node.elem:
return findNode(node.right,x)

Base Cases 

Recursive Cases 

Binary Search Tree (BST) - remove 



110

Then, we must implement the removeNode method.

Algorithm remove(T,x):
   node=find(T,x)

If node is None:
Show message “node to be removed not found”
return

   removeNode(T,node)

Algorithm removeNode(T,node):
# we must check if the node:  

#1) doesn’t have children,    
#2) has only one child 

   #3) has two children.

Binary Search Tree (BST) - remove 



111

There are three possible cases:
1) The node to be deleted is a leaf.
2) The node to be deleted only has only one child.
3) The node to be removed has two children.

7

4 8

6

7

4 8

6

7

4 8

6

1) 2) 3)

Binary Search Tree (BST) - remove 



112

FIRST CASE: The node to be removed is a leaf 
=> The reference from the parent to the node must 
be broken.

Binary Search Tree (BST) - remove 



113

Algorithm removeNode(T,node):

# First case: node doesn’t have any children

  if node.left is None and node.right is None:
If node.parent is not None:

If node.parent.left is node:
node.parent.left=None

Elif node.parent.right is node:
node.parent.right=None

node.parent = None
Else:

T.root=None #we are removing the root

Binary Search Tree (BST) - remove 



114

SECOND CASE:  The node to be removed has 
only one child => The child must be connected 
with the parent of the node to be removed 

Binary Search Tree (BST) - remove 



115

Algorithm removeNode(T,node):

…
  # Second case: only one child (the left child)
  if node.left is not None and node.right is None:

 If node.parent is not None:
If node.parent.left is node:

node.parent.left=node.left
Elif node.parent.right is node:

node.parent.right=node.left

node.left.parent = node.parent
    Else:

T.root=node.left #we are removing the root

Binary Search Tree (BST) - remove 



116

Algorithm removeNode(T,node):

…
  # Second case: only one child (the right child)
  if node.left is not None and node.right is not None:

If node.parent is not None:
If node.parent.left is node:

node.parent.left=node.right
Elif node.parent.right is node:

node.parent.right=node.right

node.right.parent = node.parent

   Else:
T.root=node.right #we are removing the root

Binary Search Tree (BST) - remove 



117

THIRD CASE:  The node to be removed has two children

remove(12)

1) We search the successor for 
the node to be removed. The 
successor is the node in the 
child subtree with the smallest 
element. 

Binary Search Tree (BST) - remove 



118

THIRD CASE:  The node to be removed has two children

remove(12)

1) We search the successor for 
the node to be removed.

2) The node’s element must be 
replaced with the 
successor's element

Binary Search Tree (BST) - remove 



119

THIRD CASE:  The node to be removed has two children

1) We search the successor for 
the node to be removed.

2) The node’s element must be 
replaced with the successor's 
element.

3) Finally, we must remove the 
successor from the right 
child.

remove(12)

Binary Search Tree (BST) - remove 



120

Algorithm removeNode(T,node):

…
   # Third case: two children 
   if node.left is not None and node.right is not None:

 #we must find the successor of the node
successor=node.right
while successor.left is not None:

successor=successor.left

Binary Search Tree (BST) - remove 



121

Algorithm removeNode(T,node):

…
   # Third case: two children 
   if node.left is not None and node.right is not None:

successor=node.right
while successor.left is not None:

successor=successor.left
#replace node’s element by successor’s element
node.element=successor.element

Binary Search Tree (BST) - remove 



122

Algorithm removeNode(T,node):

…
   # Third case: two children 
   if node.left is not None and node.right is not None:

successor=node.right
while successor.left is not None:

successor=successor.left
node.element=successor.element
#finally, we remove successor
removeNode(T,successor)

Note that the successor will always be a leaf node or a node with 
only one child.

Binary Search Tree (BST) - remove 



● BSTs improve the time complexity for search, 
insertion and removal operations. 

● Problem: A BST can degenerate in a list

Solution: Balanced BST (AVL) (next lesson)

Binary Search Tree (BST) 



Index

124

● Introduction (basic concepts)
● Binary Tree ADT
● Binary Search Tree ADT
● Balanced trees



Balanced Trees
➢ Advantage of BSTs: Insert, remove and search ~ 

O(log2n).

125



➢ If h (height) ≃ n => O(h)=O(n).

126

Balanced Trees



➢ Solution: Balancing the BST

127

Balanced Trees



● Solution: keep the tree balanced, how?
○ Size balance
○ Height balance (AVL trees, by mathematicians 

Adelson-Velskii y Landis )

128

Balanced Trees



Size-balanced BSTs
● Balance factor of a node (fe) : difference between the 

size of the left subtree and the size of the right subtree 
(or vice versa)

● A BST is size-balanced if  for EVERY node, if the 
difference between the number of nodes in left and 
right subtrees cannot be more than 1. 

balanced                            unbalanced

129



● Goal: Move nodes from the subtree with more nodes 
to the subtree with less nodes. 
○ How many? balance factor / 2 nodes.
○ The rebalancing process is performed from the 

root down

Size balanced BSTs: rebalancing algorithm

130



● Move to the right
○ Insert the root’s elem into the right subtree
○ Get the predecessor of the root (from the left 

subtree)
○ Replace the root’s elem with the predecessor's 

elem.
○ Remove the predecessor from the left subtree
○ Repeat previous steps as many times as nodes to 

be moved

131

Size balanced BSTs: rebalancing algorithm



● Move to the left: (symmetric)
○ Insert the root’s elem  into the left subtree
○ Get the successor of the root (from the right subtree)
○ Replace the root’s elem with the successor's elem.
○ Remove the successor from the right subtree.
○ Repeat previous steps as many times as nodes to be 

moved.

Size balanced BSTs: rebalancing algorithm

132



● Modify insert/remove algorithms
○ Rebalancing after each insert/remove operation, 

or
○ Rebalancing at a given moment

● The cost to maintain a BST balanced is high, O(n)

133

Size balanced BSTs: rebalancing algorithm



● The balancing must be 
performed from the root 
down

● Balance factor for root = 
size(root.left)-size(root.right)
= 7 - 1 = 6
How many nodes should we 
move to right? 6/2= 3

Size balanced BSTs: rebalancing algorithm 
(example)



Steps:
1) Insert the root into the right 

subtree.
2) Replace the root’elem by the 

predecessor’elem from the 
left subtree.

3) Remove the predecessor 
node from the left subtree.

predeccesor

Size balanced BSTs: rebalancing algorithm 
(example)



predecessor

Size balanced BSTs: rebalancing algorithm 
(example)



predeccesor

● Balance factor for root = 
size(root.left)-size(root.right)=6
-2=4 
How many nodes should we 
move to right? 4/2= 4

Steps:
1) Insert the root into the right subtree.
2) Replace the root’elem by the 

predecessor’elem from the left 
subtree.

3) Remove the predecessor node from 
the left subtree.

Size balanced BSTs: rebalancing algorithm 
(example)



predecessor

Size balanced BSTs: rebalancing algorithm 
(example)



● Balance factor for root (7) = 
size(root.left)-size(root.right)=5
-3=2 
How many nodes should we 
move to right? 2/2= 1

Steps:
1) Insert the root into the right subtree.
2) Replace the root’elem by the 

predecessor’elem from the left subtree.
3) Remove the predecessor node from 

the left subtree.

predecesor

Size balanced BSTs: rebalancing algorithm 
(example)



predecesor

Size balanced BSTs: rebalancing algorithm 
(example)



The root is balanced 
(factor=4-4). 
The unbalanced nodes are: 
5, 12 and 10. 
You should choose 5 or 12 to 
balance (remember always 
from the root down). 
For example, choose 5 

Size balanced BSTs: rebalancing algorithm 
(example)



predecesor

Size balanced BSTs: rebalancing algorithm 
(example)



predecesor

Size balanced BSTs: rebalancing algorithm 
(example)



Size balanced BSTs: rebalancing algorithm 
(example)

Balanced tree



10

5 20

15 30

 17

16

fe=1-5=-4 

successor

Size balanced BSTs: rebalancing algorithm 
(example)



10

5 20

15 30

 17

16

fe=1-5=-4 15

5 20

17 30

16

fe=2-4=-2 

10

successor

Size balanced BSTs: rebalancing algorithm 
(example)



15

5 20

17 30

16

fe=2-4=-2 

10

successor

16

5 20

17 30

15

fe=0

10

Size balanced BSTs: rebalancing algorithm 
(example)



16

5 20

17 30

15

fe=0 - 2 = 2

10

16

10 20

17 305 15

Size-balanced BST

Size balanced BSTs: rebalancing algorithm 
(example)



Index

149

● Introduction (basic concepts)
● Binary Tree ADT
● Binary Search Tree ADT
● Balanced trees

○ Size-balanced BST
○ Height-balanced BST



Height balanced BSTs v

150

Height balance factor of a node (fe) : 
Difference between the height of the right subtree and 
the height of the left subtree (o viceversa)

            fe = |hr − hl| fe=|3-3|=0

fe=|2-0|=2

fe=|1-0|=1

fe=0fe=0fe=0

fe=0

fe=|1-1|=0

fe=|2-1|=1



151

● Height balanced BST
○ For each node, the difference between the height 

of the left and right subtrees is 1 maximum

Therefore, the height balance factor of every node must 
be:  -1, 0 or +1

Height balanced BSTs v



152

● This BST is not height-balanced. 
           fe=|3-3|=0

fe=|2-0|=2

fe=|1-0|=1

fe=0fe=0fe=0

fe=0

fe=|1-1|=0

fe=|2-1|=1

Height balanced BSTs v



153

● Idea: move nodes from the longest branch to the 
shortest branch.

● Important: The balancing is done in ascending order, 
i.e., always from the bottom, only in the path from the 
inserted or removed node to the root node.

● The resulting tree must be a binary search tree (having 
the same in-order traversal)

● Rotations:
○ Simple right rotation
○ Simple left rotation
○ Double rotation (left-right)
○ Double rotation (right-left)

Height balanced BSTs (AVL)



154

● Simple right rotation example:

15

20

25

15

20

25

Height balanced BSTs (AVL)



155

● Simple right rotation example:

Height balanced BSTs (AVL)



156

● Simple right rotation example:

Height balanced BSTs (AVL)

http://visualgo.net/bst.html



157

● Simple right rotation:

A

B

C

A

B

C

H1 H2 H1 H2 H4

H3

H4

Where do we put the right 
subtree of B?

Height balanced BSTs (AVL)



158

● Simple right rotation:

A

B

C

A

B

C

InOrder:  H1AH2BH3CH4 InOrder:  H1AH2BH3CH4=

H1 H2 H1 H2 H3 H4

H3

H4

Height balanced BSTs (AVL)



159

Example (with subtrees) for simple right rotation:

- The first unbalanced node is 6
- A simple right rotation can be applied: move 4 as the root for the 

subtree and 6 as its right child
- Note that node 4 has a right subtree, what do we do with node 5?

Height balanced BSTs (AVL)



160

Example (with subtrees) for simple right rotation:

• Node 6 is rotated as right child of node 4, and it is the 
new root for the subtree

• The former right subtree for node 4, that is node 5, 
must be the new left subtree of node 6

Height balanced BSTs (AVL)



161

Example (with subtrees) for simple right rotation:

Height balanced BSTs (AVL)



162

Simple left rotation example:

20

40

50 20

40

50

Height balanced BSTs (AVL)



163

Simple left rotation:

A

B

C
A

B

C

H3 H4 H3 H4

H1

H2

H1

Where do we put the left 
subtree of B node?

Height balanced BSTs (AVL)



164

Simple left rotation:

A

B

C
A

B

C

H3 H4 H3 H4

H1

H2

InOrder:  H1AH2BH3CH4 InOrder:  H1AH2BH3CH4=

H2

H1

Height balanced BSTs (AVL)



165

Simple left rotation example:

http://visualgo.net/bst.html

Height balanced BSTs (AVL)



166

Simple left rotation example:

Height balanced BSTs (AVL)



167

Double rotation example (left-right):

20

10

30

10

20

30

10

20

30

Height balanced BSTs (AVL)



168

Double rotation (left-right) :

B

A

C

A

B

C

H1

H2 H3

H4

H1

H4

H2

H3

First step: left rotation of node B (as a left child of C)

Where do we hang subtrees?

Height balanced BSTs (AVL)



169

Double rotation (left-right):

A

B

C

A

B

C

H1 H2 H1 H2 H3 H4

H3

H4

Second rotation: move C node as right child of B

Height balanced BSTs (AVL)



170

Double rotation (left-right):

A

B

C

InOrder:  H1AH2BH3CH4 InOrder:  H1AH2BH3CH4=

H1 H2 H3 H4

B

A

C

H1

H2 H3

H4

Height balanced BSTs (AVL)



171

Double rotation example (left-right):

- Node 6 is unbalanced. For a left-right balancing two rotations 
are needed:

- First rotation, left: node 5 is the new left child of node 6 and 4 
is the new left child of 5.

- Second rotation, right: rotate node 6 to right and node 5 is the 
new root for the subtree.

Height balanced BSTs (AVL)



172

Double rotation example (left-right):

- Node 6 is unbalanced. For a left-right balancing two rotations are 
needed:

- First rotation, left: node 5 is the new left child of node 6 and 4 is 
the new left child of 5.

- Second rotation, right: rotate node 6 to right and node 5 is the new 
root for the subtree.

Height balanced BSTs (AVL)



173

Double rotation example (left-right):

- Node 6 is unbalanced. For a left-right balancing two rotations are 
needed:

- First rotation, left: node 5 is the new left child of node 6 and 4 is the 
new left child of 5.

- Second rotation, right: rotate node 6 to right and node 5 is the 
new root for the subtree.

Height balanced BSTs (AVL)



174

Example (with subtrees) for double rotation (left-right):

- Node 15 is unbalanced (fe=2). Left-right rotation can be applied
- First rotation moves 6 as the left child of node 15
- Second rotation will put 15 as right subtree of 6 node (and this is the new 

root)

Height balanced BSTs (AVL)



175

Example (with subtrees) for double rotation (left-right):

- Node 15 is unbalanced (fe=2). Left-right rotation can be applied
- First rotation moves 6 as the left child of node 15
- Second rotation will put 15 as right subtree of 6 node (and this is the new 

root)

Height balanced BSTs (AVL)



176

Example (with subtrees) for double rotation (left-right):

- Node 15 is unbalanced (fe=2). Left-right rotation can be applied
- First rotation moves 6 as the left child of node 15
- Second rotation will put 15 as right subtree of 6 node (and this is the 

new root)

Height balanced BSTs (AVL)



177

Example (with subtrees) for double rotation (left-right):

- Node 15 is unbalanced (fe=2). Left-right rotation can be applied
- First rotation moves 6 as the left child of node 15
- Second rotation will put 15 as right subtree of 6 node (and this is the 

new root)

Height balanced BSTs (AVL)



178

Double rotation example (right-left):

37

40

35

40

37

35

35

37

40

Height balanced BSTs (AVL)



179

Double rotation (right-left):

C

A

H1

H4

First rotation: B node as right child 
fo A node

What do we do with subtrees??

B

H2 H3

A

B

C

H3 H4

H1

H2

Height balanced BSTs (AVL)



180

Double rotation (right-left):

A

B

C
A

B

C

H3 H4 H3 H4

H1

H2

H1

What do we do with subtrees?

Second rotation: A node as left child 
of B node

H2

Height balanced BSTs (AVL)



181

Double rotation (right-left):

A

B

C

InOrder:  H1AH2BH3CH4 InOrder:  H1AH2BH3CH4=

H1 H2 H3 H4

C

A

H1

H4
B

H2 H3

Height balanced BSTs (AVL)



182

Double Rotation example (right-left):

Height balanced BSTs (AVL)



183

Double Rotation example (right-left):

Height balanced BSTs (AVL)



184

Double Rotation example (right-left):

Height balanced BSTs (AVL)



185

If you can choose different rotations:
1. Choose the rotation from the longest branch. 
2. Choose the simplest rotation. 

Height balanced BSTs (AVL)



186

● Advantage: Rebalancing is made from down, only in 
the path from the inserted or removed node to the root
○ So, rebalancing is O(log n)

● Disadvantage: The tree does not get so compacted as 
in size balanced BSTs. Even so, search complexity is 
also O(log n)

Height balanced BSTs (AVL)


