ucadm ‘ Universidad Carlos lll de Madrid

©0Re

Data Structures and Algorithms.
Author: Isabel Segura Bedmar

Unit 5 - Trees

Problem - Implementation of a Binary Tree. This implementation should include the
following methods: size, height, depth, preorder, inorder, postorder and levelorder,
studied in class.

Solution:

import queue #it is Python module to implement queues
class Node:

def init (self,elem=None):
self.elem=elem
self.leftChild=None
self.rightChild=None
self.parent=None

class BinaryTree:

def init (self):
self.root=None

def draw(self):
ll""Draw a tree"ll"
self. draw('',self.root,False)
print ()

def draw(self,prefix, node, isLeft):
if node !=None:
self. draw(prefix + " ", node.rightChild, False)
print (prefix + ("|-- ") + str(node.elem))
self. draw(prefix + " ", node.leftChild, True)

def size(self):
"""Returns the number of nodes"""
return self. size(self.root)

def size(self,currentNode) :
if currentNode==None:

return 0

return 1 + self. size(currentNode.leftChild) +
self. size(currentNode.rightChild)

def height (self):
"""Returns the height of the tree"""
return self. height (self.root)

def height (self, currentNode) :
if currentNode==None:
return -1

return 1 + max(self. height (currentNode.leftChild),
self. height (currentNode.rightChild))

def depth(self, currentNode) :
"""Returns the depth of a node"""

if currentNode==None:
return 0

return 1 + self.depth (currentNode.parent)

def preorder (self):
print ('pre-order traversal')
self. preorder (self.root)
print ()

def preorder (self,currentNode) :
if currentNode!=None:
print (currentNode.elem,end=" ")
self. preorder (currentNode.leftChild)
self. preorder (currentNode.rightChild)

def postorder (self):
print ('post-order traversal')
self. postorder (self.root)
print ()

def postorder (self, currentNode) :

if currentNode!=None:
self. postorder (currentNode.leftChild)
self. postorder (currentNode.rightChild)
print (currentNode.elem,end=" ")

def inorder (self):
print ('in-order traversal')
self. inorder (self.root)
print ()

def inorder (self, currentNode) :
if currentNode!=None:
self. inorder (currentNode.leftChild)
print (currentNode.elem,end=" ")
self. inorder (currentNode.rightChild)

def levelorder (self):
“W"This methods shows the level-order of tree”””
if self.root==None:
print ('tree is empty')
return
print ('level-order traversal')
g=queue.Queue ()

g.put (self.root) #we save the root

while g.empty()==False:
current=q.get () #dequeue
print (current.elem, end=' ')
if current.leftChild:
g.put (current.leftChild)
if current.rightChild:
g.put (current.rightChild)

print ()

Problem - Implementation of a Binary Search Tree. This implementation should
include the following methods: search, insert and remove, studied in class.

Solution:

from binarytrees import Node
from binarytrees import BinaryTree

class BinarySearchTree (BinaryTree) :

def insert(self,x):
"""inserts a new node, with element x, into the tree"""
if self.root==None:
self.root=Node (x)
else:
self.insertNode (self.root, x)

def insertNode (self,node, x):
"""Inserts a new node (with the element x) inside of the subtree
node"""
if node.elem==x:
Duplicate elements are not allowed
print (x, 'already exists!!!")
return

if x<node.elem:
if node.leftChild!=None:
self.insertNode (node.leftChild, x)
else:
newNode=Node (x)
node.leftChild=newNode
newNode .parent=node
else: #x>node.elem
if node.rightChild!=None:
self.insertNode (node.rightChild, x)
else:
newNode=Node (x)
node.rightChild=newNode
newNode.parent=node

def search(self,x):
return self.searchNode (self.root, x)

def searchNode (self,node, x) :
"""Auxiliary method to search a node with value x"""
if node is None:
return False

if node.elem==x:
return True

if x<node.elem:
return self.searchNode (node.leftChild, x)

if x>node.elem:
return self.searchNode (node.rightChild, x)

def find(self, x):
"""Returns the ndoe whose element is x. If it is not found, it
returns None"""
return self.findNode (self.root, x)

def findNode (self, node, x) :
if node is None:

return None

if node.elem==x:

return node

if x<node.elem:
return self.findNode (node.leftChild, x)

if x>node.elem:
return self.findNode (node.rightChild, x)

def remove (self,x):
"""Searches and removes the node whose element is x"""
node=self.find(x)
if node is None:
print (x,' does not exist!!!")
return
print ('removing ', x)
self.removeNode (node)

def removeNode (self,node) :
"""Auxiliary method to remove the node which takes as parameter"""
#First case: no children
if node.leftChild is None and node.rightChild is None:
parent node=node.parent
if parent node is not None:
if parent node.leftChild==node:
parent node.leftChild=None
else:
parent node.rightChild=None
node.parent=None
else:
self.root=None

return

#Second case: only one child
if node.leftChild is not None and node.rightChild is None:

parent node=node.parent
if parent node is not None:
if parent node.leftChild==node:
parent node.leftChild=node.leftChild
else:
parent node.rightChild=node.leftChild

node.leftChild.parent=parent node
else:
self.root=node.leftChild

return

#Second case: only one child
if node.leftChild is None and node.rightChild is not None:

parent node=node.parent
if parent node is not None:
if parent node.leftChild==node:
parent node.leftChild=node.rightChild
else:
parent node.rightChild=node.rightChild
node.rightChild.parent=parent node
else:
self.root=node.rightChild

return

#Third case: two children

successor=node.rightChild

while successor.leftChild is not None:
successor=successor.leftChild

#we replace the node's elem by the successor's elem
node.elem=successor.elem

#we remove the succesor from the tree
self.removeNode (successor)

#Now, we test the BinarySearchTree class:
import random

def test():
bst=BinarySearchTree ()

for i in range(10):
n=random.randint (0, 25)
print (n,end=" ")
bst.insert (n)

print ()
bst.draw ()

print ('traversals')
bst.inorder ()
bst.preorder ()
bst.postorder ()
bst.levelorder ()
print ()

print ('searching...'")

for 1 in range(10):
n=random.randint (0, 25)
print (n,bst.search(n))

print ('removing')
bst.remove (6)

bst.remove (2)
bst.draw ()

bst.remove (12)
bst.draw ()

bst.remove (17)
bst.draw ()

bst.remove (bst.root.elem)
bst.draw ()

print ('traversals')
bst.inorder ()
bst.preorder ()
bst.postorder ()
bst.levelorder ()
print ()

test ()

Problem: Implement an iterative method that returns the smallest element in the
tree.

Solution:
def smallest (self):
"""ITterative method that returns the smallest element in the tree"""
if self.root is None:
print ('tree is empty')
return None

node=self.root
while node.leftChild:
node=node.leftChild

return node.elem

Problem: Implement an iterative method that returns the maximum element in the
tree.
Solution:
def maximum(self) :
"""Tterative method that returns the maximum element in the tree"""
if self.root is None:
print ('tree is empty')
return None

node=self.root
while node.rightChild:
node=node.rightChild

return node.elem

Problem: Implement a recursive method that sums all the elements in the tree and
returns this result.

Solution:

def sumEtos (self):

"""Tmplement a recursive method that sums all the elements in the tree
and returns this result."""

return self. sumEtos (self.root)

def sumEtos(self,node):
if node is None:
return 0

return node.elem + self. sumEtos(node.leftChild) +
self. sumEtos (node.rightChild)

Problem: Implement a recursive method that visits all the nodes and prints those
whose grandparent’s elements is multiple of 10.
Solution:

def printl0 (self):
"""Implement a recursive method that visits all the nodes
and prints those whose grandparent’s elem is multiple of 10."""

print ('nodes whose grandparent is multiple of 10:', end=' ")
self.printlONodes (self.root)

def printlONodes (self,node) :
if node is None:
return

if node.parent!=None and node.parent.parent!=None and
node.parent.parent.elem $ 10==0:
print (node.elem, end=' ")

self.printlONodes (node.leftChild)
self.printl0Nodes (node.rightChild)

Problem: Implement an iterative method that takes a binary search node and returns
its predecessor node from its left subtree.
Solution:

def predecessor (self,node):
"""returns the predecessor node from its left subtree"""
if node is None:

return None

if node.leftChild is None:
print (node.elem, 'does not have any predeccessor in its left child')

return None

predecessor=node.leftChild
while predecessor.rightChild:
predecessor=predecessor.rightChild

return predecessor

Problem: Implement an iterative method that takes a binary search node and returns
its successor node from its right subtree.

Solution:

def successor (self,node):
"""returns the successor node from its left subtree"""
if node is None:

return None

if node.rightChild is None:
print (node.elem, 'does not have any successor in its right child')

return None
successor=node.rightChild
while successor.leftChild:

successor=successor.leftChild

return successor

Problem: Implement a new version of the remove method, where the node’s element
to be removed is replaced by using its predecessor instead of using its successor in
the tree.

Solution:
def removeByPred (self,x):
"""Searches and removes the node whose element is x"""
node=self.find(x)
if node is None:
print (x,' does not exist!!!")
return
print ('removing ', x)
self.removeNodeByPred (node)

def removeNodeByPred(self,node):
"""Auxiliary method to remove the node which takes as parameter"""
#First case: no children
if node.leftChild is None and node.rightChild is None:
parent node=node.parent
if parent node is not None:
if parent node.leftChild==node:
parent node.leftChild=None
else:
parent node.rightChild=None
node.parent=None
else:
self.root=None

return

#Second case: only one child
if node.leftChild is not None and node.rightChild is None:
parent node=node.parent
if parent node is not None:
if parent node.leftChild==node:
parent node.leftChild=node.leftChild
else:
parent node.rightChild=node.leftChild
node.leftChild.parent=parent node
else:
self.root=node.leftChild
return

#Second case: only one child
if node.leftChild is None and node.rightChild is not None:
parent node=node.parent
if parent node is not None:
if parent node.leftChild==node:
parent node.leftChild=node.rightChild
else:
parent node.rightChild=node.rightChild
node.rightChild.parent=parent node

else:
self.root=node.rightChild
return

#Third case: two children
predecessor=self.predecessor (node)

#we replace the node's elem by the successor's elem
node.elem=predecessor.elem

#we remove the succesor from the tree
self.removeNodeByPred (predecessor)

Problem: Implement a method that takes a binary search node and returns its size
balance factor. The size balance factor of a node is the difference between size of
the left subtree and the size of the right subtree
Solution:
def fsize(self,node):

"""Returns the size balance factor for the input node"""

if node is None:

return 0
return abs(self. size(node.leftChild)-self. size(node.rightChild))

Problem: Implement a method that takes a binary search node and returns its height
balance factor. The height balance factor of a node is the difference between height
of the left subtree and the height of the right subtree
Solution:
def fheight (self,node):

"""Returns the height balance factor for the input node"""

if node is None:
return 0

return abs(self. height(node.leftChild)-self. height (node.rightChild))

Problem: Implement a method that checks if the tree is size balanced. A BST is size
balanced if all its nodes have a size balance factor less or equal to 1.

Solution:

def isSizeBalanced(self):

"""Checks i1f the tree is size-balanced"™""
return self. isSizeBalanced(self.root)

def isSizeBalanced(self,node):
if node is None:
return True

if self.fsize(node)>1:
return False

return self. isSizeBalanced(node.leftChild) and
self. isSizeBalanced(node.rightChild)

Problem: Implement a method that checks if the tree is height balanced (AVL). A
BST is an AVL if all its nodes have a height balance factor less or equal to 1.
Solution:

def isAVL (self):
"""Checks if the tree is AVL (height balanced)"""
return self. isAVL(self.root)

def isAVL(self,node):
if node is None:
return True
if self.fheight (node)>1:
return False

return self. isAVL(node.leftChild) and self. isAVL(node.rightChild)

Problem: Is it a size-balanced binary search tree (BST)?. If it is not, please balance

Solution:

Fsize(5)=0, Fsize(4)=1
Fsize(8)=0, Fsize(7)=1
Fsize(50)=0, Fsize(7)=1
Fsize(6)=0

Fsize(23)=2
Fsize(15)=2

Unbalanced nodes: 15, 23.
Therefore, this tree is not size-balanced. The size-balancing algorithm must be
always applied descending down from the root to the leaves. We start with 15:
1) Insert 15 into the subtree with less nodes (right subtree).
2) Get the maximum element from the left subtree (which 8) is and replace
the root’s element with this value.
3) Finally, you must remove the maximum element from the left subtree.

Now, the tree is size-balanced.

Problem: Is it a size-balanced binary search tree (BST)?. If it is not, please balance

it.

Solution:
Fsize(3)=0
FS|ze 70)=0

(

(35)=0
Fsize(69)=1
Fsize(72)=2
Fsize(37)=2
Fsize(12)=4

The unbalanced nodes are: 72, 37, 12. We must start with 12.

1) Insert 12 in the left subtree as right child of 3.

2) Now, we should replace the root with the minimum element from the right
subtree (35). If you choose any other element from the right subtree, the
resulting tree won’t a BST.

3) Finally, you must remove 35 from the right subtree. So, the resulting tree

is.

So, you can see that the root is balance, but there are still two unbalanced nodes, 3
and 72. As both node are in the same level, you can start with 3 or with 72.

So the resulting tree will be,

So, this tree is already perfect balanced.

Problem: Is it a height-balanced tree?. If it is not, please balance it.
Solution:

Fheight(5)=0, Fheight(10)=1, Fheight(30)=0
Fheight(15)=2 Fheight(20)=2

Unbalanced nodes: 15, 20. Therefore, this tree is not height-balanced.

Rotation left-left.

You can see that in the example, the unbalanced node, 15, has a left-left
unbalanced. So, now we can perform a LL rotation, in this case, 15 will go down as
right child of 10, and 10 will become the new root of this subtree.

So, now, the tree is height-balanced tree.

Problem: Please, transform the following tree to its height-balanced tree.

Solution:

Unbalanced nodes: 30. In this case, we can apply a Right Right rotation: 30 will go
down as left child of 35, and 35 will become the new root of this subtree.

So, the result is:

Problem: Please, transform the following tree to its height-balanced tree.

Solution:

The unbalanced nodes are: 5, 10, 20. We must apply the method in an ascending
way, so we must start with 5.

Here, you can observe that the unbalance comes first from the left branch, and then
from right one. We have a left-right rotation. This rotation must first be transformed
to a simple rotation: 4 will go up as left child of 5 and 3 will become as the left child of
4.

So, we can see that only balancing the node 5, we were able to balance the whole
tree.

Problem: Please, transform the following tree to its height-balanced tree.

Solution:

Now, the unbalanced nodes are 15 and 20. But we must start with 15. Now, the
unbalance comes from the right branch, and after, from the left branch. So, we can
apply the right-left rotation. As in the previous rotation, we first transform it to a
simple rotation, so 17 will go up as right child of 15, and 18 will become the right
child of 17

So, now, we can apply the right-right rotation, so 15 will go down as left child of 17,
and 17 becomes the new root for this subtree.

Solution:

Unbalanced nodes: 37, 48, 3. We start 37 by using a left-left rotation.

Now, the only unbalanced node 3, you can apply a right-right rotation or a right-left
rotation.

If you can apply two different rotations, it is better to apply the rotation that comes
from the largest branch (most cases involve fewer transformations). In this case, it is
the right-left rotation.

So, first, 23 will go up as right child of 3, 48 becomes the right child of 23, and then,
37 must become the left child of 48.

Now, we can apply the right-right rotation, where 3 goes down as left child of 23, 18
becomes the right child of 3, 23 becomes the new root.

Sometimes there are two possible rotation and their branches have the same length,
as in this example:

In this case, you can apply a RR rotation and a RL rotation. Choose always the
simple rotation:

Problems:
Given the following binary search trees,

3)

Transform them to
a) obtain their height-balanced trees.
b) obtain their size-balanced trees.

Solution:
1.a) Height-balanced version

5O 0 0
° St&p 1 Step 2

1.b) Size- balanced version

OB O
OO

() OngO ()

2.a) Height-balanced version:

3.a) Height-balanced version:

(«r”/;ﬂ.:x:w-.
-.'I3(-\3 \ g\ﬁ\'

:.Li?:-l L LaT) C
vl W
L L83)
LN
| 68) 94
A

3.b) Size-balanced version:

