

Data Structures and Algorithms.
Author: Isabel Segura Bedmar

Unit 5 – Trees

Problem - Implementation of a Binary Tree. This implementation should include the
following methods: size, height, depth, preorder, inorder, postorder and levelorder,
studied in class.

Problem - Implementation of a Binary Search Tree. This implementation should
include the following methods: search, insert and remove, studied in class.

Problem: Implement an iterative method that returns the smallest element in the
tree.

Problem: Implement an iterative method that returns the maximum element in the
tree.

Problem: Implement a recursive method that sums all the elements in the tree and
returns this result.

Problem: Implement a recursive method that visits all the nodes and prints those
whose grandparent’s element is multiple of 10.

Problem: Implement an iterative method that takes a binary search node and returns
its predecessor node from its left subtree.

Problem: Implement an iterative method that takes a binary search node and returns
its successor node from its right subtree.

Problem: Implement a new version of the remove method, where the node’s element
to be removed is replaced by using its predecessor instead of using its successor in
the tree.

Problem: Implement a method that takes a binary search node and returns its size
balance factor. The size balance factor of a node is the difference between size of
the left subtree and the size of the right subtree

Problem: Implement a method that takes a binary search node and returns its height
balance factor. The height balance factor of a node is the difference between height
of the left subtree and the height of the right subtree

Problem: Implement a method that checks if the tree is size balanced. A BST is size
balanced if all its nodes have a size balance factor less or equal to 1.

Problem: Implement a method that checks if the tree is height balanced (AVL). A
BST is an AVL if all its nodes have a height balance factor less or equal to 1.

Problem: Is it a size-balanced binary search tree (BST)?. If it is not, please balance
it.

Problem: Is it a size-balanced binary search tree (BST)?. If it is not, please balance
it.

Problem: Is it a height-balanced tree?. If it is not, please balance it.

Problem: Please, transform the following tree to its height-balanced tree.

Problem: Please, transform the following tree to its height-balanced tree.

Problem: Please, transform the following tree to its height-balanced tree.

Problem: Please, transform the following tree to its height-balanced tree.

Problems:
Given the following binary search trees,
1)

2)

3)

Transform them to
a) obtain their height-balanced trees.
b) obtain their size-balanced trees.

