

Data structures and algorithms

Grado Ciencia e Ingeniería de Datos
Universidad Carlos III de Madrid

Lab Case.

Author: Isabel Segura-Bedmar

Creating a social network for students

Our university has a project to create a new social network for the students at
the university by integrating existing social networks managed by departments
and faculties.

The goal of the current exercise is to define and implement the different data
structures and algorithms supporting the mentioned social network according to
the requirements specified at each phase.

Phase I (Linked lists)

Considering that, in a first stage, the social network will include users of existing
social networks and considering that doubly linked lists can represent those
existing networks, you must implement the following data structures:

● A Student data structure that stores information about each student. Its
attributes are:

o email: this is the email for the student in the social network. Each
email is unique. That is, there cannot be different students with the
same email

o city: city of residence.
o campus: It has one of the following values: GETAFE, LEGANES,

COLMENAREJO.
o blocks: Students in the network can block other students to forbid

them communicating with them. This attribute stores the number
of times this student has been blocked by other users.

o date_sign_in: The date when the user registered in the social
network. The Python datetime module allows you to work with
dates and times in a simple way. In this link,
https://www.programiz.com/python-programming/datetime#date,
you can find information and examples about how to use datetime.

● A StudentsList data structure to contains all the students registered in a
social network. This data structure must be a linked list and implement all
its methods. A social network must never contain repeated students. For

this reason, the methods addLast, addFirst and insertAt must always
check if the student exists or not, before adding it into the list.

Moreover, you must implement a new data structure, ManageNetworkList, with
the following methods:

1. Create a method, named merge, that merges two social networks into
one by alternating their students. That is, the method takes two objects
of the StudentsList and returns a new list which alternates the students
from both social networks. For example, L1={A,B,C,D}, L2={E,F},
merge(L1,L2)={A,E,B,F,C,D}. The new list must not contain repeated
students.

2. Create a method getCampusCity taking a social network (that is, an

object of the StudentsList class) as input and an integer parameter opc
so that:
● If opc =1: the method must return a StudentsList object containing all

the students residing in the same city that the campus where they
are studying.

● If opc =2: the method must return a StudentsList object containing all
the students residing in cities different that the one where their
campus is located.

Note: The order in the resulting list must be the same that in the input list.

3. Create a method locateByCity taking a social network (that is, an object

of the StudentsList class) and a city name as input and returning a list
containing all the students (that is, an object of the StudentsList class)
who live in that city.

Note: The order in the resulting list must be the same that in the input list.

4. Create a method orderBy having a social network (that is, an object of
the StudentsList class) as input and an integer parameter opc so that:
● If opc=1, the method returns a new list of students (that is, an object

of the StudentsList class) sorted by ascending order according to
their email.

● If opc=2, the method returns a new list of students (that is, an object
of the StudentsList class) sorted by descending order according to
their email.

Note 1. You must implement your own sort method based on some of the
sorting algorithms (such as bubble or insertion) . 1

Note 3. The input list cannot be modified. The method must return a new list
where the students are sorted.

5. Create a method getStudentsByDateInterval, which takes a social

network (an object of the StudentsList class) and two dates (start and
end), and returns the list of all students from the input social network

1https://www.tutorialspoint.com/python/python_sorting_algorithms.htm

whose registration dates are in this interval of dates. Please, consider the
following comments:

a. start <= end.
b. Both dates are included into the interval.
c. The order in the resulting list must be the same that in the input

list.
6. Write a table with the Big-Oh functions for the StudentList’s and

ManageNetwork’s methods. Please, include a brief explanation for each
method. Moreover, you should discuss for every method its best and
worst case.

Phase II (binary search trees)

As the number of students increases, access time when searching for students
by username is increasing to unacceptable limits. In order to improve access
time, you must implement a binary search tree, StudentsTree, to store students
from a given social network. This class must implement the common methods
of a binary search tree: insert, find and remove. Moreover, you must add the
following methods:

1. Create a method, copySocialNetwork, that takes an object of the
StudentsList class (phase 1) and inserts each student from the list into
the invoking tree. The method does not return anything.

2. Create a method getOrderedList that returns an object of the
StudentsList class containing all the students in the tree ordered by their
email. In order to obtain this list, you cannot use any sort-algorithm (such
as bubble, etc), you must traverse the tree in a recursive way.

3. Create a method deleteByNumberOfBlocks having an integer n as
parameter. The method must remove all students having a number of
blocks equal or greater than n. Hint: You can use an auxiliary and
recursive method. Moreover, you can use the method remove from the
StudentsTree to remove the nodes.

4. Members of the social network could also be searched by their sign-in
date. Is the StudentsTree class an efficient data structure for this kind of
searchers? Reason your answer. If you consider that it is not efficient,
please, describe a more efficient data structure for supporting this kind of
searches.

Phase III (graph)

One of the capabilities of a social network is allowing for users to follow their
friends or people sharing interesting contents. There is a need to provide a data
structure supporting this capability. As you can imagine, the most adequate
data structure is a graph. This phase asks to provide an implementation of the
social network based on the graph data structure. Please, name it as
StudentGraph. To simplify your task, the graph only has to store the emails of

the students (see Note). You must consider that the university has more than 20
thousand students.

1. What graph representation is the most suitable for such a large number
of possible users? Explain your answer.

2. Create a constructor for the StudentGraph taking a Python list with the
students’ emails registered in the social network. When an object of
StudentGraph class is just created, there will not be any relationship
between the students. In other words, the constructor method only stores
the emails (students) into the graph, without creating any relationship
between them.

3. Create a method addStudent taking an email as input and adding it to
the social network.

4. Create a method areFriends taking two students (emails) as input and
creating a friendship relation between them. Keep in mind that friendship
relation is a symmetric relationship.

5. Create a method getDirectFriends that, given a student (email), returns
a Python list containing the emails of his/her direct friends.

6. Create a method suggestedFriends that, given a student, returns a
Python list containing the emails of his/her potential friends. That is, the
method must find those students connected with the given student but
having no direct link with him/her. Hint: Some of the graph traversal
algorithms may be useful to implement the solution.

